首页> 外文期刊>Engineering Applications of Artificial Intelligence >The fuzzy cognitive pairwise comparisons for ranking and grade clustering to build a recommender system: An application of smartphone recommendation
【24h】

The fuzzy cognitive pairwise comparisons for ranking and grade clustering to build a recommender system: An application of smartphone recommendation

机译:等级和等级聚类的模糊认知成对比较,构建推荐系统:智能手机推荐的应用

获取原文
获取原文并翻译 | 示例

摘要

In a competitive high-end product market, many enterprises offer a variety of products to compete the market shares in different segments. Due to rich information of plenty of competitive product alternatives, consumers face the challenges to compare and choose the most suitable products. Whilst a product comprises different tangible and intangible features, consumers tend to buy the features rather than a product itself. A successful product has most features meeting the consumer needs. Perception values of product features from consumers are complex to be measured and predicted. To reduce information overload for searching their preferred products, this paper proposes the Fuzzy Cognitive Pairwise Comparison for Ranking and Grading Clustering (FCPC-RGC) to build a recommender system. The fuzzy number enables rating flexibility for the users to handle rating uncertainty. The Fuzzy Cognitive Pairwise Comparison (FCPC) is used to evaluate consumer preferences for multiple features of a product by pairwise comparison ratings. The Fuzzy Grade Clustering (FGC) is used to group the product alternatives into different consumer preference grades. To verify the validity and applicability of FCPC-RGC, a smartphone recommender system using the proposal approach is demonstrated how the system is able to help the consumers to recommend the suitable products according to the customers' individual preference.
机译:在竞争激烈的高端产品市场中,许多企业提供各种产品来竞争不同细分市场的市场份额。由于拥有大量具有竞争力的产品替代方案的丰富信息,消费者面临着比较和选择最合适产品的挑战。虽然产品包含不同的有形和无形特征,但消费者倾向于购买特征而不是产品本身。成功的产品具有满足消费者需求的大多数功能。消费者对产品特征的感知值很难测量和预测。为了减少搜索他们喜欢的产品时的信息过载,本文提出了一种基于模糊认知成对比较的排序和分级聚类算法(FCPC-RGC),以建立推荐系统。模糊数为用户提供了评分灵活性,以处理评分不确定性。模糊认知成对比较(FCPC)用于通过成对比较等级评估消费者对产品多个功能的偏好。模糊等级聚类(FGC)用于将产品替代方案分为不同的消费者偏好等级。为了验证FCPC-RGC的有效性和适用性,演示了使用提议方法的智能手机推荐系统,该系统如何帮助消费者根据客户的个人偏好推荐合适的产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号