首页> 外文期刊>Engineering Applications of Artificial Intelligence >A Monte-Carlo-based interval De Novo programming method for optimal system design under uncertainty
【24h】

A Monte-Carlo-based interval De Novo programming method for optimal system design under uncertainty

机译:不确定条件下最优系统设计的基于蒙特卡洛的区间新规划算法

获取原文
获取原文并翻译 | 示例

摘要

In this study, a Monte-Carlo-based interval De Novo programming (MC-IDP) method is developed for designing optimal electricity-allocation system under uncertainty. MC-IDP incorporates Monte Carlo simulation (MCS), interval-parameter programming (IPP), and De Novo programming (DNP) within a general framework. MC-IDP has advantages in (i) constructing optimal system design through introducing the flexibility in the right-hand sides of constraints, (ii) handling uncertainty presented as interval numbers, and (iii) mitigating the influence of decision makers’ subjectivity in optimum-path ratio. MC-IDP is then applied to a case study of planning electricity-allocation system involving multiple conflicting objectives, where various scenarios associated with different optimum-path ratios are examined. Results reveal that different scenarios would lead to varied electricity-allocation patterns, pollutant/ greenhouse gas (GHG) emissions, as well as system benefits. Compared to the traditional interval multiobjective programming (IMOP), MC-IDP can achieve higher system benefits and reduce electricity loss; moreover, the maximum benefit for each objective under MC-IDP can be realized at the same time. Findings are useful to decision makers for evaluating alternatives of system designs as well as for identifying which of these designs can most efficiently achieve the desired system objectives in a more sustainable development manner.
机译:在这项研究中,开发了一种基于蒙特卡洛的区间从头编程(MC-IDP)方法,用于设计不确定性下的最优电力分配系统。 MC-IDP在通用框架内结合了蒙特卡罗模拟(MCS),间隔参数编程(IPP)和De Novo编程(DNP)。 MC-IDP的优势在于(i)通过在约束的右侧引入灵活性来构建最佳系统设计,(ii)处理以区间数表示的不确定性,以及(iii)减轻决策者的主观性对优化的影响-路径比。然后,将MC-IDP应用于涉及多个冲突目标的规划电力分配系统的案例研究,其中研究了与不同最佳路径比相关的各种情况。结果表明,不同的情景将导致不同的电力分配方式,污染物/温室气体(GHG)排放以及系统收益。与传统的间隔多目标编程(IMOP)相比,MC-IDP可以实现更高的系统效益并减少电力损耗。而且,可以同时实现MC-IDP下每个目标的最大利益。对于决策者来说,这些发现对于评估系统设计的备选方案以及确定其中哪些设计可以以更可持续的发展方式最有效地实现期望的系统目标很有用。

著录项

  • 来源
  • 作者单位

    Sino-Canada Energy and Environmental Research Center, North China Electric Power University;

    State Key Laboratory of Water Environment, School of Environment, Beijing Normal University,Institute for Energy, Environment and Sustainable Communities, University of Regina;

    Sino-Canada Energy and Environmental Research Center, North China Electric Power University;

    State Key Laboratory of Water Environment, School of Environment, Beijing Normal University,Institute for Energy, Environment and Sustainable Communities, University of Regina;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Decision making; De Novo programming; Monte Carlo; Multiobjective; System design; Uncertainty;

    机译:决策;从头编程;蒙特卡洛;多目标;系统设计;不确定性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号