首页> 外文期刊>Engineering Applications of Artificial Intelligence >Nonlinear observer-based recurrent wavelet neuro-controller in disturbance rejection control of flexible structures
【24h】

Nonlinear observer-based recurrent wavelet neuro-controller in disturbance rejection control of flexible structures

机译:柔性结构扰动抑制中基于非线性观测器的递归小波神经控制器

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a model-based output feedback recurrent wavelet neural network (RWNN) controller is proposed for a class of nonlinear MIMO systems with time-varying matched/mismatched uncertainties. The proposed RWNN emulator adaptively trains to follow an ideal state-feedback controller which is designed on the underlying linear model (ULM) of the plant. Simultaneously, the control system employs an adaptive neural network (NN) mechanism to estimate the mismatch between the RWNN controller and this ideal control law. As a result, the conservatism associated with the classical robust control methods where the controller is synthesized based on worst-case bounds is addressed. Moreover, in order to generalize the subjected class of the investigatable plants, the echo-state feature of adaptive RWNN is used to contribute to the performance of nonminimum phase systems. Accordingly, in the context of flexible smart structures with non-collocated sensor/actuator configuration, a delayed feedback is added in the network which brings about a better match between the model output and the measured output. As a result, even for systems with an unknown Lipschitz constant of lumped uncertainty, the controller can be trained online to compensate with an additional revision of the control law following some Lyapunov-based adaptive stabilizing rules. Additionally, the current approach is proposed as an alternative to the hot topic of nonlinear system identification-based control synthesis where the exact structure of the nonlinearity is required.
机译:针对一类具有时变匹配/不匹配不确定性的非线性MIMO系统,提出了一种基于模型的输出反馈递归小波神经网络(RWNN)控制器。拟议的RWNN仿真器自适应地训练以遵循理想的状态反馈控制器,该控制器是根据工厂的基础线性模型(ULM)设计的。同时,控制系统采用自适应神经网络(NN)机制来估计RWNN控制器与该理想控制律之间的不匹配。结果,解决了与经典鲁棒控制方法相关的保守性,在经典鲁棒控制方法中,基于最坏情况的边界来合成控制器。此外,为了归纳可调查植物的所属类别,自适应RWNN的回波状态特征被用于促进非最小相位系统的性能。因此,在具有非共置传感器/执行器配置的灵活智能结构的情况下,网络中会添加延迟反馈,从而在模型输出与测量输出之间实现更好的匹配。结果,即使对于具有未知的集中不确定性Lipschitz常数的系统,也可以在线训练控制器,以遵循一些基于Lyapunov的自适应稳定规则,对控制律进行额外的修正。此外,提出了当前方法,以替代基于非线性系统识别的控制综合的热门话题,在该领域中,需要精确的非线性结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号