首页> 外文期刊>Engineering Applications of Artificial Intelligence >Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems
【24h】

Hybrid metaheuristic multi-layer reinforcement learning approach for two-level energy management strategy framework of multi-microgrid systems

机译:多微电网系统两级能源管理战略框架混合型成型多层增强学习方法

获取原文
获取原文并翻译 | 示例

摘要

This study builds a two-level energy management strategy framework for decentralized autonomy of microgrids and optimal coordinated operation of a multi-microgrid system. To reduce the operational cost of a combined cooling, heating and power multi-microgrid system with uncertain information and to improve the accuracy of load demand prediction, a hybrid metaheuristic multi-layer reinforcement learning algorithm is proposed for the framework of a multi-microgrid system. The proposed method is composed of a weighted delayed deep deterministic policy gradient algorithm, power adjustment network, and a genetic algorithm. At the first level, the microgrid operators utilize weighted delayed deep deterministic policy gradient algorithm with power adjustment network to optimize their operational strategies; at the second level, the distribution system operator employs a genetic algorithm to adjust its operational decision-making for minimizing the operational cost of the multi-microgrid system, reducing the peak-to-average ratios and power fluctuations at the points of common coupling. The data privacy of the parties in the multi-microgrid system is protected as each entity in the system does not have direct access to other entities' information during the decision-making process. Numerical simulation results show that the proposed weighted delayed deep deterministic policy gradient algorithm with power adjustment network can rapidly obtain high-quality deterministic approximate optimal solution for economic dispatch of the microgrid. The framework proposed in this study achieves decentralized autonomy of microgrids, reduces the operational cost of the multi-microgrid system with incomplete or uncertain information, and indirectly improves the accuracy of load demands prediction at the points of common coupling.
机译:本研究为微电网的分散性和多微电网系统的最佳协调操作构建了两级能源管理战略框架。为了降低具有不确定信息的组合冷却,加热和电力多微电网系统的运行成本,提高负载需求预测的准确性,提出了一种多微电网系统的框架杂交地横向多层增强学习算法。所提出的方法由加权延迟深度确定性政策梯度算法,功率调整网络和遗传算法组成。在第一级,微电网运营商利用加权延迟深度确定性政策梯度算法,功率调整网络优化其操作策略;在第二级,分配系统运营商采用遗传算法来调整其操作决策,以最大限度地减少多微电网系统的运行成本,从而降低了共用点处的峰值平均值和功率波动。多微电网系统中的各方的数据隐私受到保护,因为系统中的每个实体都没有直接访问决策过程中的其他实体的信息。数值模拟结果表明,建议的加权延迟深层确定性政策梯度梯度算法能够迅速获得微电网经济派遣的高质量确定性近似最优解决方案。本研究提出的框架实现了微电网的分散性自治,降低了具有不完整或不确定的信息的多微电网系统的运行成本,并且间接提高了普通耦合点对负载需求预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号