首页> 外文期刊>Engineering Applications of Artificial Intelligence >A novel design of experiment algorithm using improved evolutionary multi-objective optimization strategy
【24h】

A novel design of experiment algorithm using improved evolutionary multi-objective optimization strategy

机译:一种新颖的使用改进的进化多目标优化策略实验算法设计

获取原文
获取原文并翻译 | 示例

摘要

The paper aims to propose an intelligent design of experiment (DOE) algorithm using an improved evolutionary multi-objective optimization approach. Adaptive evolutionary strategies are embedded in the algorithm to support the design of simulation test schemes with multiple factors whose levels are same or different. Comparative results with several existing DOE algorithms show better sampling capacity and fine sampling efficiency of the proposed algorithm. Application effects of a complex flight simulator indicate the algorithm a wide technological prospect of serving well certain complex systems.
机译:本文旨在提出使用改进的进化多目标优化方法提出实验(DOE)算法的智能设计。 自适应进化策略嵌入在算法中,支持模拟测试方案的设计,其中多种因素的水平相同或不同。 几种现有DOE算法的比较结果显示了所提出的算法的更好的采样能力和精细采样效率。 复杂飞行模拟器的应用效果表明该算法为服务良好的复杂系统提供了广泛的技术前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号