首页> 外文期刊>Engineering Applications of Artificial Intelligence >Deep regression adaptation networks with model-based transfer learning for dynamic load identification in the frequency domain
【24h】

Deep regression adaptation networks with model-based transfer learning for dynamic load identification in the frequency domain

机译:深回归自适应网络,具有基于模型的转移学习,用于频域中的动态负载识别

获取原文
获取原文并翻译 | 示例

摘要

Frequency-domain dynamic load identification methods based on neural network (NN) models construct models independently at each frequency, but are inaccurate and inefficient to train. To address these problems, a deep regression adaptation network (DRAN) with model-transfer learning is proposed for identifying dynamic loads in the frequency domain. The aim is to take advantage of the similarity of uncorrelated multi-source dynamic loads and multi-vibration response at adjacent frequencies. First, a DRAN model for load identification is established using the historical data for a specific frequency. Second, the trained DRAN parameters are transferred to the DRAN for the target frequency as the initial parameter values. Next, the transferred DRAN is fine-tuned with the historical data of the target frequency to obtain the load identification model of the target frequency. Finally, the trained DRAN parameters of the current target frequency are transferred to the next target frequency. This process is iterated until a DRAN model for all frequencies is established. Because a frequency response function is a continuous function varying with frequency, the relationships between the dynamic loads and response at adjacent frequencies are similar. DRAN can adapt the historical data of different frequencies to one neural network for training, and then extract the common feature information of different frequencies to improve the accuracy of the model. Moreover, instead of setting the initial weights randomly and training them independently for each DRAN model, model-transfer learning is used to obtain better initial weights from the trained weights of DRAN models of adjacent frequencies. The proposed method was evaluated on the experimental data of a cylindrical shell structure under acoustic vibration joint excitation. The results show that the proposed method can obtain better initial weights, higher accuracy, better noise robustness, and shorter training time than a neural network.
机译:基于神经网络(NN)模型的频域动态负载识别方法在每个频率下独立地构造模型,但是训练的不准确性和低效。为了解决这些问题,提出了一种具有模型传输学习的深度回归自适应网络(DRAN),用于识别频域中的动态负载。目的是利用相邻频率的不相关的多源动态负载和多振动响应的相似性。首先,使用特定频率的历史数据建立用于负载识别的DRAN模型。其次,训练的DRAN参数被传送到DRAN的目标频率作为初始参数值。接下来,随着目标频率的历史数据进行微调的转移的DRAN,以获得目标频率的负载识别模型。最后,当前目标频率的训练的DRAN参数被传送到下一个目标频率。迭代此过程,直到建立所有频率的DRAN模型。因为频率响应函数是频率变化的连续功能,所以相邻频率的动态负载和响应之间的关系是相似的。 Dran可以使不同频率的历史数据调整到一个神经网络进行训练,然后提取不同频率的共同特征信息以提高模型的准确性。此外,而不是将初始权重随机设置并独立地为每个DRAN模型进行训练,而是用于从相邻频率的DRAN模型的训练权重获得更好的初始权重。在声学振动关节激发下对圆柱形壳结构的实验数据评估所提出的方法。结果表明,该方法可以获得更好的初始重量,更高的精度,更好的噪声鲁棒性,并且比神经网络更短的训练时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号