首页> 外文期刊>Engineering Applications of Artificial Intelligence >An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation
【24h】

An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation

机译:应用于实例分割和深度估计的多任务学习损失梯度的有效组合

获取原文
获取原文并翻译 | 示例

摘要

Advanced driver assistance systems are responsible for assisting decision making and can play an important role in safety and traffic efficiency. Such systems require robust perception methods to handle complex urban scenes, and one way to achieve this is through instance segmentation. However, due to the difficulty in separating overlapping objects into different instances, this task becomes very challenging. For this, several authors proposed CNN-based methods and used depth information to enhance the instance segmentation performance. A promising way to explore this information is by adopting a multi-task learning approach, in which multiple tasks are learned simultaneously by sharing the same architecture. Usually, this combination is made by the weighted sum of loss functions, in which the weight of each task is defined manually. Nonetheless, when tasks have different natures with variation in the order of magnitude, performing this combination during training so that all tasks converge towards their optimal solution is not trivial. Aiming to get the best possible solution, we modeled the multi-task learning as a multiobjective optimization problem and, as the main contribution of this paper, we proposed a greedy approach to find the weighting coefficients for each task, performing a trade-off between tasks that allow the optimization of multiple loss functions. Experimental results showed that it is possible to enhance instance segmentation when depth information is properly explored. Moreover, not only did depth information help instance segmentation, but also did the instance segmentation help the depth estimations, achieving better performance compared to single-task models.
机译:先进的驾驶员援助系统负责协助决策,并可在安全性和交通效率方面发挥重要作用。此类系统需要强大的感知方法来处理复杂的城市场景,并且一种实现这一目标的方法是通过实例分段。但是,由于难以将重叠对象分开到不同的情况下,这项任务变得非常具有挑战性。为此,若干作者提出了基于CNN的方法和使用深度信息来增强实例分段性能。一种有希望的探索这些信息的方式是采用多任务学习方法,其中通过共享相同的架构同时学习多个任务。通常,这种组合由加权丢失函数的加权和,其中每个任务的权重被手动定义。尽管如此,当任务具有不同的自然,在幅度上的级别的变化,在训练期间执行这种组合,以便所有任务都朝向其最佳解决方案收敛不是微不足道的。旨在获得最佳解决方案,我们将多项任务学习建模为多目标优化问题,作为本文的主要贡献,我们提出了一种贪婪的方法来查找每个任务的加权系数,在介于之间执行权衡允许优化多损耗功能的任务。实验结果表明,当正确探索深度信息时,可以增强实例分段。此外,不仅是深度信息可帮助实例分割,还有实例分割有助于深度估计,与单任务模型相比,实现更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号