首页> 外文期刊>Engineering Applications of Artificial Intelligence >A forest-based algorithm for selecting informative variables using Variable Depth Distribution
【24h】

A forest-based algorithm for selecting informative variables using Variable Depth Distribution

机译:一种基于林的算法,用于使用可变深度分布选择信息的信息

获取原文
获取原文并翻译 | 示例

摘要

Predictive maintenance of systems and their components in technical systems is a promising approach to optimize system usage and reduce system downtime. Various sensor data are logged during system operation for different purposes, but sometimes not directly related to the degradation of a specific component. Variable selection algorithms are necessary to reduce model complexity and improve interpretability of diagnostic and prognostic algorithms. This paper presents a forest-based variable selection algorithm that analyzes the distribution of a variable in the decision tree structure, called Variable Depth Distribution, to measure its importance. The proposed variable selection algorithm is developed for datasets with correlated variables that pose problems for existing forest-based variable selection methods. The proposed variable selection method is evaluated and analyzed using three case studies: survival analysis of lead-acid batteries in heavy-duty vehicles, engine misfire detection, and a simulated prognostics dataset. The results show the usefulness of the proposed algorithm, with respect to existing forest-based methods, and its ability to identify important variables in different applications. As an example, the battery prognostics case study shows that similar predictive performance is achieved when only 17% percent of the variables are used compared to all measured signals.
机译:在技​​术系统中的系统及其组件的预测维护是优化系统使用量和减少系统停机时间的有希望的方法。在系统操作期间以不同目的在系统操作期间记录各种传感器数据,但有时与特定组件的劣化无直接相关。可变选择算法是降低模型复杂性并提高诊断和预后算法的可解释性必需的。本文介绍了一种基于林的可变选择算法,分析了决策树结构中变量的分布,称为可变深度分布,以测量其重要性。所提出的可变选择算法是为具有相关变量的数据集开发的,该数据集对现有的基于林的可变选择方法构成问题。使用三种案例研究评估和分析所提出的可变选择方法:重型车辆中铅酸电池的存活分析,发动机失火检测和模拟预测数据集。结果表明了所提出的算法关于现有的基于林的方法的有用性,以及其在不同应用中识别重要变量的能力。作为示例,电池预测案例研究表明,与所有测量信号相比仅使用17%的变量时,实现了类似的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号