首页> 外文期刊>Engineering Applications of Artificial Intelligence >Deep multi-level feature pyramids: Application for non-canonical firearm detection in video surveillance
【24h】

Deep multi-level feature pyramids: Application for non-canonical firearm detection in video surveillance

机译:深度多级特征金字塔:在视频监控中的非规范枪械检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

The epidemic of gun violence worldwide necessitates the need for an active-based video surveillance network to combat this crime. In this context, autonomously detecting handguns is crucial in capturing firearm-related crimes. However, current object detectors using deep learning are unable to capture handguns at different scales in an unconstrained environment. Hence, this paper puts forward an enhanced deep multi-level feature pyramid network that addresses the difficulty in inferring handguns from a non-canonical perspective. We first construct a dataset containing handguns in an unconstrained environment for representation learning. The dataset is constructed from a set of 250 recorded videos and with over 2500 distinct labeled frames. Crucially, these labeled frames account for the absence of a proper video surveillance-based handgun dataset. We then train the dataset on a multi-level multi-scale object detector, i.e., M2Det. We further improve the performance of M2Det by: (1) Enhancing the base features by concatenating shallow, medium and deep features from the backbone according to its relative receptive field; (2) Implementing generalized intersection-over-union as its localization loss; and (3) Integrating Focal Loss as its classification loss to improve detection of small-scale handguns. Experiments on a challenging video surveillance test dataset demonstrate that the proposed model achieves 87.42% accuracy. In addition, we implement adaptive surveillance image partitioning to redetect handguns at specific regions. This method potentially solves the challenge of sporadically poor real-world handgun classifications. This model is capable of pioneering non-canonical handgun detection for active-based video surveillance systems.
机译:全世界枪支暴力的流行病需要需要一个基于积极的视频监控网络来解决这种罪行。在这种情况下,自主检测手枪对于捕获枪械相关的罪行至关重要。但是,使用深度学习的当前对象探测器无法在不受约束环境中以不同的尺度捕获手枪。因此,本文提出了增强的深度多级特征金字塔网络,该网络从非规范的角度来解决推断手枪的​​困难。我们首先在不约束环境中构建包含手枪的数据集以进行表示学习。数据集由一组250个录制的视频构建,并且具有超过2500个不同的标记帧。至关重要的是,这些标记的帧占据了基于适当的视频监控的手枪数据集。然后,我们在多级多尺度对象检测器上培训数据集,即M2DET。我们进一步提高了M2DET的性能:(1)通过根据其相对接收领域通过从骨架上连接浅,中和深度特征来增强基础特征; (2)实施广义交叉汇款作为其本地化损失; (3)将焦损整合为其分类亏损,以改善小型手枪的检测。对挑战视频监控测试数据集的实验表明,拟议的模型可实现87.42%。此外,我们实施自适应监视图像分区以在特定区域重新重新手枪。这种方法可能解决了偶像差的现实世界手枪分类的挑战。该模型能够对基于主动的视频监控系统进行开创非规范手枪检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号