首页> 外文期刊>Engineering Applications of Artificial Intelligence >A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network
【24h】

A tutorial on solving ordinary differential equations using Python and hybrid physics-informed neural network

机译:使用Python和混合物理信息通知神经网络求解常微分方程的教程

获取原文
获取原文并翻译 | 示例

摘要

We present a tutorial on how to directly implement integration of ordinary differential equations through recurrent neural networks using Python. In order to simplify the implementation, we leveraged modern machine learning frameworks such as TensorFlow and Keras. Besides, offering implementation of basic models (such as multilayer perceptions and recurrent neural networks) and optimization methods, these frameworks offer powerful automatic differentiation. With all that, the main advantage of our approach is that one can implement hybrid models combining physics-informed and data-driven kernels, where data-driven kernels are used to reduce the gap between predictions and observations. Alternatively, we can also perform model parameter identification. In order to illustrate our approach, we used two case studies. The first one consisted of performing fatigue crack growth integration through Euler's forward method using a hybrid model combining a data-driven stress intensity range model with a physics-based crack length increment model. The second case study consisted of performing model parameter identification of a dynamic two-degree-of-freedom system through Runge-Kutta integration.
机译:我们提出了一个关于如何通过使用Python通过经常性神经网络直接实现常微分方程的集成的教程。为了简化实施,我们利用现代机器学习框架,如纹身流和克拉斯。此外,提供了基本模型的实施(如多层看法和复发性神经网络)和优化方法,这些框架提供了强大的自动化分化。通过所有的方法,我们的方法的主要优点是可以实现组合物理信息和数据驱动内核的混合模型,其中数据驱动的内核用于减少预测和观察之间的差距。或者,我们还可以执行模型参数标识。为了说明我们的方法,我们使用了两个案例研究。第一个包括通过使用基于物理的裂缝长度增量模型的混合模型来通过欧拉的前向方法进行疲劳裂纹增长集成。第二种案例研究包括通过Runge-Kutta集成执行动态二维自由度系统的模型参数识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号