首页> 外文期刊>Computers & Structures >Estimating model inadequacy in ordinary differential equations with physics-informed neural networks
【24h】

Estimating model inadequacy in ordinary differential equations with physics-informed neural networks

机译:用物理信息神经网络估算普通微分方程模型不足

获取原文
获取原文并翻译 | 示例

摘要

A number of physical systems can be described by ordinary differential equations. When physics is well understood, the time dependent responses are easily obtained numerically. The particular numerical method used for integration depends on the application. Unfortunately, when physics is not fully understood, the discrepancies between predictions and observed responses can be large and unacceptable. In this paper, we propose an approach that uses observed data to estimate the missing physics in the original model (i.e., model-form uncertainty). In our approach, we first design recurrent neural networks to perform numerical integration of the ordinary differential equations. Then, we implement the recurrent neural network as a directed graph. This way, the nodes in the graph represent the physics-informed kernels found in the ordinary differential equations. We quantify the missing physics by carefully introducing data-driven in the directed graph. This allows us to estimate the missing physics (discrepancy term) even for hidden nodes of the graph. We studied the performance of our proposed approach with the aid of three case studies (fatigue crack growth, corrosion-fatigue crack growth, and bearing fatigue) and state-of-the-art machine learning software packages. Our results demonstrate the ability to perform estimation of discrepancy, reducing gap between predictions and observations, at reasonable computational cost. (C) 2020 Elsevier Ltd. All rights reserved.
机译:常微分方程可以描述许多物理系统。当物理学很了解时,时间依赖性响应很容易在数字上获得。用于集成的特定数值方法取决于应用程序。不幸的是,当物理学不完全理解时,预测和观察到的反应之间的差异可能是大而不可接受的。在本文中,我们提出了一种方法,该方法使用观察到的数据来估计原始模型中缺失的物理(即,模型 - 形式不确定性)。在我们的方法中,我们首先设计经常性的神经网络,以执行常微分方程的数值集成。然后,我们将经常性神经网络实施为定向图。这样,图中的节点表示在普通微分方程中发现的物理信息内核。我们通过在定向图中仔细介绍数据驱动来量化丢失的物理。这允许我们估计缺失的物理学(差异项)即使是图表的隐藏节点。我们通过三种案例研究(疲劳裂纹生长,腐蚀 - 疲劳裂纹生长和轴承疲劳)和最先进的机器学习软件包来研究我们提出的方法的表现。我们的结果表明,在合理的计算成本下,我们展示了执行差异估计,降低预测和观察之间的差距。 (c)2020 elestvier有限公司保留所有权利。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号