首页> 外文期刊>Engineering Applications of Artificial Intelligence >A novel methodology to classify test cases using natural language processing and imbalanced learning
【24h】

A novel methodology to classify test cases using natural language processing and imbalanced learning

机译:一种新的方法来分类使用自然语言处理和不平衡学习的测试用例

获取原文
获取原文并翻译 | 示例

摘要

Detecting the dependency between integration test cases plays a vital role in the area of software test optimization. Classifying test cases into two main classes - dependent and independent - can be employed for several test optimization purposes such as parallel test execution, test automation, test case selection and prioritization, and test suite reduction. This task can be seen as an imbalanced classification problem due to the test cases' distribution. Often the number of dependent and independent test cases is uneven, which is related to the testing level, testing environment and complexity of the system under test. In this study, we propose a novel methodology that consists of two main steps. Firstly, by using natural language processing we analyze the test cases' specifications and turn them into a numeric vector. Secondly, by using the obtained data vectors, we classify each test case into a dependent or an independent class. We carry out a supervised learning approach using different methods for handling imbalanced datasets. The feasibility and possible generalization of the proposed methodology is evaluated in two industrial projects at Bombardier Transportation, Sweden, which indicates promising results.
机译:检测集成测试用例之间的依赖性在软件测试优化领域发挥着重要作用。将测试用例分为两个主要类 - 依赖和独立 - 可以用于多种测试优化目的,例如并行测试执行,测试自动化,测试用例选择和优先级,以及减少测试套件。由于测试用例的分布,此任务可以视为一个不平衡的分类问题。通常,依赖和独立的测试用例的数量不均匀,这与测试水平,测试环境和经过测试系统的复杂性有关。在这项研究中,我们提出了一种新的方法,包括两个主要步骤。首先,通过使用自然语言处理,我们分析了测试用例的规格并将它们转换为数字向量。其次,通过使用所获得的数据向量,我们将每个测试用例分类为依赖或独立类。我们使用不同方法进行监督的学习方法来处理不平衡数据集。拟议方法的可行性和可能的​​概括在瑞典庞巴迪运输的两项工业项目中评估了这一工业项目,这表明了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号