首页> 外文期刊>Engineering Applications of Artificial Intelligence >Cross-scale generative adversarial network for crowd density estimation from images
【24h】

Cross-scale generative adversarial network for crowd density estimation from images

机译:用于图像的人群密度估计的跨规模生成对抗网络

获取原文
获取原文并翻译 | 示例

摘要

This research develops a cross-scale convolutional spatial generative adversarial network (CSGAN), in order to estimate the crowd density from images accurately. It consists of two similar generators, one for the whole feature extraction, and the other for patch scale feature extraction. An encoder-decoder structure is employed to generate density maps from input images or patches. Additionally, a new objective function for crowd counting called cross-scale consistency pursuit containing an adversarial loss, L2 loss, perceptual loss, and consistency loss, is developed to make the generated density maps more realistic and closer to the ground truth. The effectiveness of the proposed CSGAN is verified in two public datasets. Results indicate that the new objective function is able to reach the most satisfying value of evaluation metrics in both the low-density and high-density crowd scenes when it is compared with other state-of-the-art methods on the test datasets. Moreover, the proposed CSGAN is more practical and flexible due to the smaller computational complexity. Its estimation capability will be significantly improved even in a small size of training data. Overall, this research contributes to the development of a novel computer vision approach together with a new objective function to generate density maps from cross-scale crowd images, enabling the counting process more accurately and efficiently.
机译:该研究开发了横级卷积空间生成的对抗网络(CSGAN),以便精确地估计来自图像的人群密度。它由两个类似的发电机组成,一个用于整个特征提取,另一个用于补丁秤特征提取。采用编码器 - 解码器结构来生成来自输入图像或斑块的密度映射。此外,开发了一种新的人群计数的新客观函数,称为含有对抗丧失,L2损失,感知损失和一致性损失的串级一致性追踪,以使产生的密度映射更加逼真,更接近地面真理。拟议的CSGAN的有效性在两个公共数据集中核实。结果表明,当在测试数据集上与其他最先进的方法进行比较时,新的目标函数能够达到低密度和高密度人群场景中的评估度量最满意的评估度量值。此外,由于计算复杂性较小,所提出的CSAN是更实用的,更灵活。即使在小型培训数据中,它的估计能力也会显着提高。总体而言,这项研究有助于开发一种新颖的计算机视觉方法,与新的客观函数一起生成串尺度人群图像的密度图,使得计数过程更准确,有效地实现计数过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号