首页> 外文期刊>Engineering Applications of Artificial Intelligence >Extra-adaptive robust online subspace tracker for anomaly detection from streaming networks
【24h】

Extra-adaptive robust online subspace tracker for anomaly detection from streaming networks

机译:用于异常媒体检测的超自适应强大的在线子空间跟踪器

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection in time-evolving networks has many applications, for instance, traffic analysis in transportation networks and intrusion detection in computer networks. One group of popular methods for anomaly detection from evolving networks are robust online subspace trackers. However, these methods suffer from problem of insensitivity to drastic changes in the evolving subspace. In order to solve this problem, we propose a new robust online subspace and anomaly tracker, which is more adaptive and robust against sudden drastic changes in the subspace. More accurate estimation of low rank and sparse components by this tracker leads to more accurate anomaly detection. We evaluate the accuracy of our method with real-world dynamic network data sets with varying sparsity levels. The result is promising and our method outperforms the state-of-the-art.
机译:时间不断发展的网络中的异常检测有许多应用,例如,在计算机网络中的运输网络和入侵检测中的交通分析。来自不断发展的网络的异常检测的一组流行方法是强大的在线子空间跟踪器。然而,这些方法遭受了不敏感的问题,以不断变化的子空间变化。为了解决这个问题,我们提出了一种新的强大的在线子空间和异常跟踪器,这更为适应性和强大的对抗子空间的突然剧烈变化。该跟踪器更准确地估计低等级和稀疏组件,导致更准确的异常检测。我们评估了具有不同稀疏度水平的现实世界动态网络数据集的方法的准确性。结果是有前途的,我们的方法优于现有技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号