首页> 外文期刊>Engineering Applications of Artificial Intelligence >Data Privacy Protection for Edge Computing of Smart City in a DIKW Architecture
【24h】

Data Privacy Protection for Edge Computing of Smart City in a DIKW Architecture

机译:DIKW架构中智能城市边缘计算的数据隐私保护

获取原文
获取原文并翻译 | 示例

摘要

Current trend of shifting computing from centralized Cloud to Edge has not only empowered huge amount of IoT devices with the capability of the accumulation of individualized computing and storage as a flexible whole, but also brought along new privacy challenges originating in emerging new usage requests on the accumulated content or resources from multiple sources of various integrated devices at the Edge. In this work, we focus on modeling the privacy content of multiple sources through mapping them as resources of types of Data, Information and Knowledge in the well-known DIKW architecture. We propose to categorize content objects and relationships uniformly as typed resources of data, information, and knowledge, according to our formalized DIKW architecture composing a meta model of DIKW and extended Data Graph, Information Graph and Knowledge Graph. We further propose to categorize target privacy resources of data and information according to their presence in the modeled searching space in our DIKW architecture as explicit and implicit divisions. Thereafter we propose protection solutions according to explicit and implicit divisions for privacy target concerning typed data. The efficiency and performance potential of our processing solution originates in a multiple dimensional modeling strategy of typed data, which is modeled solely with various frequencies of various meta level dimensions.
机译:从集中云到边缘转换计算的当前趋势不仅能够赋予大量的IOT设备,具有个性化计算和存储作为灵活的整体的能力,而且还带来了新的隐私挑战,这些挑战始于新兴的新使用请求来自边缘各种集成设备的多个源的累计内容或资源。在这项工作中,我们专注于通过将其作为资源映射为众所周知的Dikw架构中的数据类型,信息和知识的资源来建立多种来源的隐私内容。根据我们正式的DIKW架构,根据我们的正式DIKW架构,根据DIKW和扩展数据图,信息图和知识图形的元模型,根据数据,信息和知识的类型,根据数据,信息和知识的类型的资源,将内容对象和关系统一分类为数据,信息和知识。我们进一步建议根据他们在Dikw架构中的模型搜索空间中的存在对数据和信息的目标隐私资源进行分类为显式和隐式划分。此后,我们提出了根据有关键入数据的隐私目标的显式和隐式分割的保护解决方案。我们的处理解决方案的效率和性能潜力起源于键入数据的多维建模策略,其仅适用于各种元级尺寸的各种频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号