首页> 外文期刊>Engineering Applications of Artificial Intelligence >Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs
【24h】

Combined weightless neural network FPGA architecture for deforestation surveillance and visual navigation of UAVs

机译:组合式失重神经网络FPGA架构,用于无人机的毁林监测和视觉导航

获取原文
获取原文并翻译 | 示例

摘要

This work presents a combined weightless neural network architecture for deforestation surveillance and visual navigation of Unmanned Aerial Vehicles (UAVs). Binary images, which are required for position estimation and UAV navigation, are provided by the deforestation surveillance circuit. Learned models are evaluated in a real UAV flight over a green countryside area, while deforestation surveillance is assessed with an Amazon forest benchmarking image data. Small utilization percentage of Field Programmable Gate Arrays (FPGAs) allows for a higher degree of parallelization and block processing of larger regions of input images.
机译:这项工作提出了一种组合的失重神经网络架构,用于无人驾驶飞机(UAV)的毁林监测和视觉导航。毁林监视电路提供位置估计和无人机导航所需的二进制图像。学习过的模型是在绿色乡村地区上进行的真实无人机飞行中进行评估的,而森林砍伐监测则使用亚马逊森林基准图像数据进行评估。现场可编程门阵列(FPGA)的利用率低,可以对较大范围的输入图像进行并行化和块处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号