首页> 外文期刊>Engineering Applications of Artificial Intelligence >A powerful variant of symbiotic organisms search algorithm for global optimization
【24h】

A powerful variant of symbiotic organisms search algorithm for global optimization

机译:共生生物搜索算法的强大变体,用于全局优化

获取原文
获取原文并翻译 | 示例

摘要

This paper suggests a new variation to the existing symbiotic organisms search (SOS) algorithm developed by simulating three symbiotic strategies of mutualism, commensalism and parasitism used by the organisms. In the revised version called improved SOS (ISOS), the theory of quasi-oppositional based learning is employed during generation of initial population and in the parasitism phase to raise the possibility of getting closer to high-quality solutions. An efficient alternative for parasitism phase is also presented. The two upgraded parasitism strategies avoid the over exploration issue of original parasitism phase that causes unwanted longtime search in the inferior search space as the solution is already refined. To guide the algorithm perform an exhaustive search around the best solution in attempting to further improve the search model of ISOS, a chaotic local search based on the piecewise linear chaotic map is coupled into the proposed algorithm. Twentysix benchmark functions and three engineering design problems are tested and a contrast with other popular metaheuristics is widely established. Comparative results substantiate the great contribution of proposed ISOS algorithm in solving various optimization problems with superior global search capability and convergence characteristics which render it useful in handling global optimization problems.
机译:本文提出了一种对现有共生生物搜索(SOS)算法的新变体,该算法通过模拟有机体使用的共生,共情和寄生三种共生策略来开发。在称为改进SOS(ISOS)的修订版本中,基于准对立学习的理论在初始人口产生期间和寄生阶段被采用,以提高接近高质量解决方案的可能性。还提出了寄生阶段的有效替代方案。两种升级的寄生策略避免了原始寄生阶段的过度探索问题,因为解决方案已经完善,因此在劣质搜索空间中会导致不必要的长时间搜索。为了指导算法围绕最佳解决方案进行详尽搜索,以尝试进一步改进ISOS的搜索模型,将基于分段线性混沌图的混沌局部搜索耦合到所提出的算法中。测试了26种基准测试功能和三个工程设计问题,并与其他流行的元启发式方法进行了广泛的对比。比较结果证实了所提出的ISOS算法在解决具有最佳全局搜索功能和收敛特性的各种优化问题方面的巨大贡献,这使其在处理全局优化问题中很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号