首页> 外文期刊>Engineering Applications of Artificial Intelligence >Combining density peaks clustering and gravitational search method to enhance data clustering
【24h】

Combining density peaks clustering and gravitational search method to enhance data clustering

机译:结合密度峰聚类和重力搜索方法增强数据聚类

获取原文
获取原文并翻译 | 示例

摘要

Data clustering is a valuable field for extracting effective information and hidden patterns from datasets. In this paper we propose a clustering approach based on density peaks clustering (DPC) and a modified gravitational search algorithm (GSA), called GSA-DPC. To take advantage of the distance measure and nearest neighbor rule among the data points, our method simultaneously combines the distance and density mechanisms. Based on the optimized cluster center set selected by DPC working with density measure, the best clustering distribution is achieved according to the distance criterion of GSA. We compare the performance of GSA-DPC with other well-known clustering approaches, including density-based spatial clustering of applications with noise (DBSCAN), density peaks clustering, K-Means, spectral clustering (SC), grey wolf optimizer for clustering (GWO-C), gravitational search algorithm for clustering (GSA-C) and data clustering algorithm based on GSA and K-Means (GSA-KM). The experimental results indicate that GSA-DPC outperforms these competing approaches.
机译:数据聚类是从数据集中提取有效信息和隐藏模式的重要领域。在本文中,我们提出了一种基于密度峰聚类(DPC)和改进的重力搜索算法(GSA)的聚类方法,称为GSA-DPC。为了利用数据点之间的距离测度和最近邻规则,我们的方法同时结合了距离和密度机制。基于DPC选择的优化聚类中心集并进行密度测量,根据GSA的距离准则获得最佳聚类分布。我们将GSA-DPC的性能与其他众所周知的聚类方法进行了比较,包括基于噪声的应用程序的基于密度的空间聚类(DBSCAN),密度峰聚类,K均值,频谱聚类(SC),用于聚类的灰狼优化器( GWO-C),基于重力的聚类搜索算法(GSA-C)和基于GSA和K-Means的数据聚类算法(GSA-KM)。实验结果表明,GSA-DPC的性能优于这些竞争方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号