首页> 外文期刊>Engineering Applications of Artificial Intelligence >UAV trajectory optimization for Minimum Time Search with communication constraints and collision avoidance
【24h】

UAV trajectory optimization for Minimum Time Search with communication constraints and collision avoidance

机译:具有通信约束和避免碰撞的最短时间搜索的无人机轨迹优化

获取原文
获取原文并翻译 | 示例

摘要

Minimum Time Search (MTS) algorithms help in search missions proposing search trajectories that minimize the target detection time considering the available information about the search scenario. This work proposes a MTS planner based on ant colony optimization that includes communication and collision avoidance constraints. This ensures that the Unmanned Aerial Vehicles (UAVs) are able to complete the optimized search trajectories without risk of collision or loss of communication with the ground control station. This approach is a great advantage nowadays, where UAVs flight regulation is quite strict, often requiring to monitor the state of the UAVs during the whole mission, impeding UAV deployments without continuous communication to the ground control station. The proposed algorithm is tested with several search scenarios and compared against two state of the art techniques based on Cross Entropy Optimization and Genetic Algorithms, which have been adapted to make them consider collision and communication constraints as well.
机译:最小时间搜索(MTS)算法可帮助搜索任务建议搜索轨迹,从而在考虑有关搜索场景的可用信息的情况下最大程度地减少目标检测时间。这项工作提出了一个基于蚁群优化的MTS规划器,其中包括通信和避免碰撞约束。这确保了无人飞行器(UAV)能够完成优化的搜索轨迹,而不会与地面控制站发生碰撞或通讯中断的风险。如今,这种方法是一个巨大的优势,因为无人机的飞行管制非常严格,通常需要在整个任务期间监视无人机的状态,从而阻碍了无人机的部署而无法与地面控制站持续通信。所提出的算法在几种搜索场景下进行了测试,并与基于交叉熵优化和遗传算法的两种最新技术进行了比较,这两种技术都经过了改进,使其也考虑了碰撞和通信约束。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号