首页> 外文期刊>Engineering Applications of Artificial Intelligence >Identification of nonlinear systems using adaptive variable-order fractional neural networks (Case study: A wind turbine with practical results)
【24h】

Identification of nonlinear systems using adaptive variable-order fractional neural networks (Case study: A wind turbine with practical results)

机译:使用自适应变阶分数阶神经网络识别非线性系统(案例研究:具有实际结果的风力涡轮机)

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a Variable-Order Fractional Single-layer Neural Network (VOFSNN) and a Variable-Order Fractional Multi-layer Neural Network (VOFMNN) are proposed to identify nonlinear systems assuming all the system states are measurable. Fractional Lyapunov-like approach and Gronwall-Bellman integral inequality are employed to prove stability and asymptotic stability conditions of the identification error dynamics. A set of novel stable learning rules for the fractional order, the hidden layer weights and the output layer weights are derived to update the proposed VOFSNN and VOFMNN parameters. The proposed methods capabilities are evaluated and confirmed by the practical data gathered from a wind turbine under operation in a wind farm.
机译:在本文中,提出了一种可变阶分数阶单层神经网络(VOFSNN)和一个可变阶分数阶多层神经网络(VOFMNN)来假设所有系统状态都是可测量的,以识别非线性系统。利用分数次Lyapunov方法和Gronwall-Bellman积分不等式证明了辨识误差动力学的稳定性和渐近稳定性。导出了一组新颖的分数阶稳定学习规则,隐藏层权重和输出层权重,以更新建议的VOFSNN和VOFMNN参数。通过从在风力发电场中运行的风力涡轮机收集的实际数据来评估和确认所提出的方法的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号