首页> 外文期刊>Engineering Applications of Artificial Intelligence >Optimizing echo state network with backtracking search optimization algorithm for time series forecasting
【24h】

Optimizing echo state network with backtracking search optimization algorithm for time series forecasting

机译:利用回溯搜索优化算法优化回声状态网络进行时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

The echo state network (ESN) is a state-of-the art reservoir computing approach, which is particularly effective for time series forecasting problems because it is coupled with a time parameter. However, the linear regression algorithm commonly used to compute the output weights of ESN could usually cause the trained network over-fitted and thus obtain unsatisfactory results. To overcome the problem, we present four optimized ESNs that are based on the backtracking search optimization algorithm (BSA) or its variants to improve generalizability. Concretely, we utilize BSA and its variants to determine the most appropriate output weights of ESN given that the optimization problem is complex while BSA is a novel evolutionary algorithm that effectively unscrambles optimal solutions in complex spaces. The three BSA variants, namely, adaptive population selection scheme (APSS)-BSA, adaptive mutation factor strategy (AMFS)-BSA, and APSS&AMFS-BSA, were designed to further improve the performance of BSA. Time series forecasting experiments were performed using two real-life time series. The experimental results of the optimized ESNs were compared with those of the basic ESN without optimization, and the two other comparison approaches, as well as the other existing approaches. Experimental results showed that (a) the results of the optimized ESNs are more accurate than that of basic ESN and (b) APSS&AMFS-BSA-ESN nearly outperforms basic ESN, the three other optimized ESNs, the two comparison approaches, and other existing optimization approaches.
机译:回波状态网络(ESN)是最新的水库计算方法,由于它与时间参数耦合,因此对于时间序列预测问题特别有效。但是,通常用于计算ESN的输出权重的线性回归算法通常会导致训练后的网络过拟合,从而获得不理想的结果。为解决该问题,我们提出了四个基于回溯搜索优化算法(BSA)或其变体的优化ESN,以提高通用性。具体而言,鉴于优化问题很复杂,而BSA是一种新颖的进化算法,可以有效地解读复杂空间中的最优解,因此我们利用BSA及其变体来确定ESN的最合适的输出权重。为了进一步提高BSA的性能,设计了三个BSA变体,即自适应人口选择方案(APSS)-BSA,自适应突变因子策略(AMFS)-BSA和APSS&AMFS-BSA。时间序列预测实验是使用两个真实的时间序列进行的。将经过优化的ESN的实验结果与未经优化的基本ESN的实验结果,其他两种比较方法以及其他现有方法进行了比较。实验结果表明:(a)优化的ESN的结果比基本ESN的结果更准确,并且(b)APSS&AMFS-BSA-ESN几乎胜过基本ESN,其他三个优化的ESN,两种比较方法以及其他现有的优化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号