首页> 外文期刊>Engineering analysis with boundary elements >From formal solutions to computational methods avoiding passages to the limit
【24h】

From formal solutions to computational methods avoiding passages to the limit

机译:从形式解决方案到计算方法,避免过度使用

获取原文
获取原文并翻译 | 示例

摘要

Before the advent of digital computers, the so-called formal solutions were the only available solutions to differential equations. Formal solutions can be closed solutions, or solutions involving infinite algorithms. The latter involve an infinite number of algebraic operations. Truncation becomes thus necessary, and the concepts of truncation error and convergence become vital. Once digital computers became available, other kinds of computational methods could be used and it became convenient to distinguish between computational methods like finite difference and finite element methods, in which numerical analysis starts before integration, and those like classical integral methods and boundary element methods, in which numerical analysis starts after integration. The classical finite difference method, in which a mesh is required. is a particular case of the generalised difference methods, characterised by a local interpolation around each node together with the collocation technique. The generalised difference method may be regarded as a modality of the meshless techniques. The finite element method differs of the finite difference method in that the approximate solution is generated respectively by variational and by collocation techniques. Hybrid and block elements are dual generalisations of the finite element method in which compatibility and equilibrium are respectively allowed within each element. Also in what concerns the methods in which numerical analysis starts after integration, bold steps have been given toward their generalisation, like those avoiding passages to the limit. (C) 2005 Elsevier Ltd. All rights reserved.
机译:在数字计算机出现之前,所谓的形式解是微分方程的唯一可用解。正式解决方案可以是封闭解决方案,也可以是涉及无限算法的解决方案。后者涉及无限数量的代数运算。因此,截断变得必要,并且截断错误和收敛的概念变得至关重要。一旦数字计算机可用,便可以使用其他类型的计算方法,并且可以方便地区分有限差分法和有限元法(其中数值分析在积分之前就开始)以及经典积分法和边界元法之类的计算方法,积分后开始进行数值分析。经典的有限差分法,其中需要网格。这是广义差分法的一种特殊情况,其特征在于每个节点周围的局部插值以及搭配技术。广义差分法可以被认为是无网格技术的一种形式。有限元法与有限差分法的不同之处在于,近似解分别通过变分和搭配技术生成。混合元素和块元素是有限元方法的双重概括,其中在每个元素内分别允许兼容和平衡。在涉及积分后数值分析开始的方法的问题上,也针对其概括性给出了大胆的步骤,例如避免采用极限的方法。 (C)2005 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号