首页> 外文期刊>Engineering analysis with boundary elements >Three-dimensional singular boundary elements for corner and edge singularities in potential problems
【24h】

Three-dimensional singular boundary elements for corner and edge singularities in potential problems

机译:潜在问题中角点和边点奇点的三维奇异边界元素

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the spatial derivative of the potential field governed by the Laplace and Poisson equations can become infinite at corners (in two and three dimensions) and edges (in three dimensions). Conventional elements in the finite element and boundary element methods do not give accurate results at these singular locations. This paper describes the formulation and implementation of new singular elements for three-dimensional boundary element analysis of corner and edge singularities in potential problems. Unlike the standard element, the singular element shape functions incorporate the correct singular behavior at the edges and corners, specifically the eigenvalues, in the formulation. The singular elements are used to solve some numerical examples in electrostatics, and it is shown that they can improve the accuracy of the results for capacitance and electrostatic forces quite significantly. The effects of the size of the singular elements are also investigated. (c) 2004 Elsevier Ltd. All rights reserved.
机译:众所周知,由拉普拉斯和泊松方程控制的势场的空间导数在角(二维和三维)和边缘(三维)上可以变得无限大。有限元法和边界元法中的常规元素在这些奇异位置上无法给出准确的结果。本文描述了潜在问题中角和边奇异性的三维边界元素分析的新奇异元素的制定和实现。与标准元素不同,奇异元素形状函数在公式中的边缘和拐角处具有正确的奇异行为,特别是特征值。奇异元素用于解决静电学中的一些数值示例,结果表明它们可以显着提高电容和静电力结果的准确性。还研究了奇异元素大小的影响。 (c)2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号