首页> 外文期刊>Engineering analysis with boundary elements >A modified Gauss quadrature formula with special integration points for evaluation of Quasi-singular integrals
【24h】

A modified Gauss quadrature formula with special integration points for evaluation of Quasi-singular integrals

机译:具有特殊积分点的改进的高斯积分公式,用于评估拟奇异积分

获取原文
获取原文并翻译 | 示例

摘要

It is well known in the boundary element method that integration rules fail when the integrand presents a nearby singularity. This drawback arises when the field point is near the source point, i.e. in the case of a domain with very narrow boundaries or when the field point where we try to calculate stresses or any other field variables, is near the boundaries. In the present paper a quadrature formulas for ( isolated singularities near the integration interval, based on ordinary or special Langrange interpolatory polynomials, is obtained. This interpolatory formulas present similarities with known formulas for the numerical evaluation of singular integrals. Quadrature formulas for regular and singular integrals with conjugate poles are also derived. Numerical examples are given and the proposed quadrature rules present the expected polynomial accuracy.
机译:在边界元方法中众所周知,当被积物呈现附近的奇点时,积分规则会失败。当场点靠近源点时,即在边界非常狭窄的域中,或者当我们尝试计算应力或任何其他场变量的场点位于边界附近时,就会出现此缺点。在本文中,基于普通或特殊的Langrange插值多项式,获得了(接近积分间隔的孤立奇点的)正交公式。该插值公式与已知公式的奇异积分数值计算具有相似性。正则和奇异的正交公式推导了带有共轭极点的积分,给出了算例,提出的正交规则给出了期望的多项式精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号