首页> 外文期刊>Engineering analysis with boundary elements >A spectral collocation method with triangular boundary elements
【24h】

A spectral collocation method with triangular boundary elements

机译:具有三角边界元的谱配点方法

获取原文
获取原文并翻译 | 示例

摘要

A spectral collocation method is proposed for solving integral equations arising from boundary integral formulations over surfaces discretized into flat or curved triangular elements. In the numerical approximation, a function of interest defined over a triangular element is approximated with an arbitrary-degree complete polynomial of two local triangle barycentric coordinates. Collocation points are then deployed at the nodes of a triangular Lobatto grid constructed on the basis of the zeros of the Lobatto polynomials, so that the number of collocation points over each element is equal to the number of terms in a complete polynomial expansion. The node interpolation functions are computed from the Proriol polynomial base using the generalized Vandermonde matrix approach. The spectral element method is applied to solve integral equations of the second kind arising from the double-layer representation of a harmonic function in the interior or exterior of a sphere. The numerical results confirm a rapid convergence with respect to the order of the polynomial expansion.
机译:提出了一种光谱搭配方法,用于求解由离散为平面或弯曲三角形元素的表面上的边界积分公式产生的积分方程。在数值逼近中,用两个局部三角形重心坐标的任意度完全多项式来逼近在三角形元素上定义的感兴趣函数。然后将并置点部署在基于Lobatto多项式零点构造的三角形Lobatto网格的节点上,以便每个元素上的并置点数等于完整多项式展开式中的项数。节点插值函数是使用广义Vandermonde矩阵方法从Proriol多项式基计算得到的。频谱元素方法用于求解第二种积分方程,该积分方程是球体内部或外部的谐波函数的双层表示形式。数值结果证实了多项式展开阶数的快速收敛。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号