首页> 外文期刊>Engineering analysis with boundary elements >3-D boundary element-finite element method for velocity-vorticity formulation of the Navier-Stokes equations
【24h】

3-D boundary element-finite element method for velocity-vorticity formulation of the Navier-Stokes equations

机译:Navier-Stokes方程速度涡度公式的3-D边界元-有限元方法

获取原文
获取原文并翻译 | 示例

摘要

A numerical method for the solution of the incompressible Navier-Stokes equations was developed using an integral representation of the conservation equations. The velocity-vorticity formulation is employed, where the kinematics is given with the Poisson equation for the velocity vector, while the kinetics is represented with the vorticity transport equation. Based on computational aspects, resulting from CPU time and memory requirements of the boundary domain integral method, a combined approach to the solution of the set of governing equations is proposed. Kinematics is solved using boundary element method (BEM), while kinetics is solved using finite element method (FEM). Lid driven flow in a cubic cavity was considered to show the robustness and versatility of this formulation. Results of Re = 100,400,1000 show a good agreement with benchmark results.
机译:利用守恒方程的积分表示,开发了一种求解不可压缩的Navier-Stokes方程的数值方法。采用速度-涡度公式,其中运动学由速度矢量的泊松方程给出,而动力学由涡度传递方程表示。基于计算方面,结合CPU时间和边界域积分方法的内存需求,提出了一种求解控制方程组的组合方法。运动学使用边界元法(BEM)求解,动力学使用有限元法(FEM)求解。立方腔中盖驱动的流动被认为显示了该配方的坚固性和多功能性。 Re = 100,400,1000的结果与基准结果显示出良好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号