首页> 外文期刊>Engineering analysis with boundary elements >The golden section search algorithm for finding a good shape parameter for meshless collocation methods
【24h】

The golden section search algorithm for finding a good shape parameter for meshless collocation methods

机译:无网格搭配方法中寻找良好形状参数的黄金分割搜索算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose to apply the golden section search algorithm to determining a good shape parameter of multiquadrics (MQ) for the solution of partial differential equations. We use two radial basis function based meshless collocation methods, the method of approximate particular solutions (MAPS) and Kansa's method, to solve partial differential equations. Due to the severely ill-conditioned matrix system using MQ, we also consider the truncated singular value decomposition method (TSVD) to regularize the smoothness of the error versus shape parameter curve so that a reasonably good shape parameter can be identified. We also analyze cost and accuracy for using LU decomposition and TSVD. Numerical results show that the proposed golden section search method is effective and provides a reasonable shape parameter along with acceptable accuracy of the solution.
机译:在本文中,我们建议将黄金分割搜索算法应用于确定偏二阶方程组的一个好二次形(MQ)形状参数。我们使用两种基于径向基函数的无网格搭配方法(近似特殊解(MAPS)方法和Kansa方法)来求解偏微分方程。由于使用MQ的病态严重的矩阵系统,我们还考虑了截断奇异值分解方法(TSVD)来规范误差与形状参数曲线的平滑度,以便可以确定合理的良好形状参数。我们还分析了使用LU分解和TSVD的成本和准确性。数值结果表明,提出的黄金分割搜索方法是有效的,并提供了合理的形状参数以及可接受的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号