首页> 外文期刊>Engineering analysis with boundary elements >A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications
【24h】

A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications

机译:用于金融和其他应用的二维跳跃扩散模型中的第一遍概率密度函数的径向基函数方法

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of computing the survival (first-passage) probability density function of jump-diffusion models with two stochastic factors. In particular the Fokker-Planck partial integro-differential equation associated to these models is solved using a meshless collocation approach based on radial basis functions (RBF). To enhance the computational efficiency of the method, the calculation of the jump integrals is performed using a suitable Chebyshev interpolation procedure. In addition, the RBF discretization is carried out in conjunction with an ad hoc change of variables, which allows to use radial basis functions with equally spaced centers and at the same time yields an accurate resolution of the gradients of the survival probability density function near the barrier. Numerical experiments are presented showing that the RBF approach is extremely accurate and fast, and performs significantly better than the conventional finite difference method.
机译:我们考虑了计算具有两个随机因素的跳跃扩散模型的生存(一次通过)概率密度函数的问题。尤其是,使用基于径向基函数(RBF)的无网格搭配方法,可以解决与这些模型相关的Fokker-Planck偏微分方程。为了提高该方法的计算效率,使用合适的切比雪夫插值过程执行跳跃积分的计算。此外,RBF离散化是与变量的临时更改结合执行的,它允许使用等距中心的径向基函数,并同时精确地分辨出生存概率密度函数的梯度。屏障。数值实验表明,RBF方法非常准确,快速,并且比常规的有限差分方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号