首页> 外文期刊>Engineering analysis with boundary elements >Slow convergence of the BEM with constant elements in solving beam bending problems
【24h】

Slow convergence of the BEM with constant elements in solving beam bending problems

机译:边界元法在求解梁弯曲问题中的收敛速度慢

获取原文
获取原文并翻译 | 示例

摘要

Constant elements offer many advantages as compared with other higher-order elements in the boundary element method (BEM). With the use of constant elements, integrals in the BEM can be calculated accurately with analytical integrations and no corner problems need to be addressed. These features can make fast solution methods for the BEM (such as the fast multipole, adaptive cross approximation, and pre-corrected fast Fourier transform methods) especially efficient in computation. However, it is well known that the collocation BEM with constant elements is not adequate for solving beam bending problems due to the slow convergence or lack of convergence in the BEM solutions. In this study, we quantify this assertion using simple beam models and applying the fast multipole BEM code so that a large number of elements can be used. It is found that the BEM solutions do converge numerically to analytical solutions. However, the convergence rate is very slow, in the order of h to the power of 0.55-0.63, where h is the element size. Some possible reasons for the slow convergence are discussed in this paper.
机译:与边界元素方法(BEM)中的其他高阶元素相比,常数元素具有许多优点。通过使用常量元素,可以通过分析积分来准确计算BEM中的积分,而无需解决边角问题。这些功能可以使BEM的快速求解方法(例如快速多极,自适应交叉逼近和预校正的快速傅立叶变换方法)在计算上特别有效。但是,众所周知,由于BEM解决方案的收敛速度较慢或缺乏收敛性,因此与常数元素并置的BEM不足以解决梁弯曲问题。在这项研究中,我们使用简单的光束模型并应用快速的多极BEM代码来量化此断言,以便可以使用大量元素。发现BEM解决方案确实在数值上收敛于分析解决方案。但是,收敛速度非常慢,大约是h到0.55-0.63的幂的幂,其中h是元素大小。本文讨论了收敛缓慢的一些可能原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号