首页> 外文期刊>Engineering analysis with boundary elements >An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations
【24h】

An implicit RBF meshless approach for solving the time fractional nonlinear sine-Gordon and Klein-Gordon equations

机译:求解时间分数阶非线性Sine-Gordon和Klein-Gordon方程的隐式RBF无网格方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a numerical method for the solution of time fractional nonlinear sine-Gordon equation that appears extensively in classical lattice dynamics in the continuum media limit and Klein-Gordon equation which arises in physics. In this method we first approximate the time fractional derivative of the mentioned equations by a scheme of order O(τ~(3-α)), 1 <α<2 then we will use the Kansa approach to approximate the spatial derivatives. We solve the two-dimensional version of these equations using the method presented in this paper on different domains such as rectangular and non-rectangular domains. Also, we prove the unconditional stability and convergence of the time discrete scheme. We show that convergence order of the time discrete scheme is O(τ). We solve these fractional PDEs on different non-rectangular domains. The aim of this paper is to show that the meshless method based on the radial basis functions and collocation approach is also suitable for the treatment of the nonlinear time fractional PDEs. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
机译:在本文中,我们提出了一种求解时间分数非线性sine-Gordon方程的数值方法,该方法广泛出现在连续介质极限的经典晶格动力学和物理学中出现的Klein-Gordon方程中。在这种方法中,我们首先通过阶数为O(τ〜(3-α)),1 <α<2的方案对上述方程的时间分数导数进行近似,然后使用Kansa方法近似空间导数。我们使用本文介绍的方法在矩形和非矩形域等不同域上求解这些方程的二维形式。此外,我们证明了时间离散方案的无条件稳定性和收敛性。我们证明了时间离散方案的收敛阶为O(τ)。我们在不同的非矩形域上求解这些分数PDE。本文的目的是证明基于径向基函数和搭配方法的无网格方法也适用于处理非线性时间分数PDE。将数值实验的结果与解析解进行比较,以确认所提出方案的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号