首页> 外文期刊>Engineering analysis with boundary elements >Nonlinear bending analysis of nonlocal nanoplates with general shapes and boundary conditions by the boundary-only method
【24h】

Nonlinear bending analysis of nonlocal nanoplates with general shapes and boundary conditions by the boundary-only method

机译:仅边界方法对具有一般形状和边界条件的非局部纳米板的非线性弯曲分析

获取原文
获取原文并翻译 | 示例

摘要

AbstractIn this paper, the geometrically nonlinear bending analysis of nanoplates with general shapes and boundary conditions is highlighted. The governing equations are derived based on the classical plate theory using nonlocal differential constitutive relation of Eringen and von Kármán's nonlinear strains. The boundary-only method is developed by using the principle of the analog equation (PAE). According to the PAE, the original governing differential equations are replaced by three uncoupled equations with fictitious sources under the same boundary conditions, namely two Poisson equations and one biharmonic equation. Subsequently, the fictitious sources are established using a technique based on the boundary element method and approximated by using the radial basis functions. The solution of the actual problem is attained from the known integral representations of the potential and plate problems. Therefore, the kernels of the boundary integral equations are conveniently established and readily calculated that the complex nanoplates can be easily analyzed. The accuracy of the proposed methodology is evaluated by comparing the obtained results with available solutions. Moreover, the influences of nonlocal parameter on the various characteristics of effective distributed loads are elucidated. Finally, the effects of nonlocal parameter, von Kármán's nonlinearity and aspect ratio on nonlinear bending responses are studied.
机译: 摘要 在本文中,着重介绍了具有一般形状和边界条件的纳米板的几何非线性弯曲分析。基于Eringen和vonKármán的非线性应变的非局部微分本构关系,基于经典板理论推导了控制方程。仅边界方法是通过使用模拟方程(PAE)的原理开发的。根据PAE,原始的控制微分方程被三个具有相同边界条件的虚拟源解耦方程代替,即两个泊松方程和一个双谐波方程。随后,使用基于边界元法的技术建立虚拟源,并使用径向基函数对其进行近似。实际问题的解决方案是从势和板问题的已知积分表示中获得的。因此,边界积分方程的核被方便地建立和容易地计算,从而可以容易地分析复杂的纳米板。通过比较获得的结果与可用的解决方案来评估所提出方法的准确性。此外,阐明了非局部参数对有效分布载荷的各种特性的影响。最后,研究了非局部参数,冯·卡尔曼的非线性和纵横比对非线性弯曲响应的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号