首页> 外文期刊>Engineering analysis with boundary elements >High precision interval analysis of the frequency response of structural-acoustic systems with uncertain-but-bounded parameters
【24h】

High precision interval analysis of the frequency response of structural-acoustic systems with uncertain-but-bounded parameters

机译:具有不确定但有界参数的结构声学系统频率响应的高精度间隔分析

获取原文
获取原文并翻译 | 示例

摘要

The recently developed edge-based smoothed finite element method (ES-FEM) is an efficiency method for solving frequency response of structural-acoustic systems with nominally deterministic parameters. In order to further dealing with the unavoidable uncertainties, both the interval perturbation techniques and the subinterval perturbation techniques are introduced and embedded into the hybrid edge-based smoothed finite element method for structural-acoustic systems with uncertain-but-bounded uncertainties in this work. Firstly, the structural subsystems are described by using 2D edge-based smoothed finite element method; meanwhile, the acoustic subsystems are established by using 3D edge-based finite element method. Then the interval perturbation technique is introduced to establish the interval perturbation equations of structural-acoustic coupled system with small uncertain level. For parameters with large uncertain level, the subinterval perturbation technique is further embedded to improve the computational accuracy (named SIPES-FEM/ES-FEM). The results obtained by IPES-FEM/ES-FEM and SIPES-FEM/ES-FEM are compared with results obtained by Monte-Carlo method. The higher computational accuracy and efficiency of the proposed IPES-FEM/ES-FEM and SIPES-FEM/ES-FEM are verified by two numerical examples.
机译:最近开发的基于边缘的平滑有限元方法(ES-FEM)是用于求解具有标称确定性参数的结构声学系统的频率响应的效率方法。为了进一步处理不可避免的不确定性,将间隔扰动技术和子间扰动技术引入并嵌入到基于混合边缘的平滑有限元方法中,用于结构 - 声学系统,在这项工作中具有不确定的但有界不确定性。首先,通过使用基于2D边缘的平滑有限元方法来描述结构子系统;同时,通过使用基于3D边缘的有限元方法建立声学子系统。然后引入了间隔扰动技术以建立具有小不确定水平的结构声耦合系统的间隔扰动方程。对于具有较大不确定水平的参数,进一步嵌入了Subinterval扰动技术以提高计算精度(名为Sipes-FEM / ES-FEM)。将IPES-FEM / ES-FEM和SIPES-FEM / ES-FEM获得的结果与Monte-Carlo方法获得的结果进行比较。所提出的IPES-FEM / ES-FEM和SIPES-FEM / ES-FEM的较高的计算准确性和效率由两个数值示例验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号