首页> 外文期刊>Engineering analysis with boundary elements >Moving mesh method for simulating high-dimensional time dependent PDEs with fast propagating shock waves
【24h】

Moving mesh method for simulating high-dimensional time dependent PDEs with fast propagating shock waves

机译:移动网格方法,用于使用快速传播冲击波模拟高尺寸依赖性PDE

获取原文
获取原文并翻译 | 示例

摘要

When solutions of the high dimensional PDE involve fast propagating shock waves, existing variational moving mesh methods are rather unstable and time consuming. To circumvent the problem, we improve the existing variational method by adding one term which adapts the mesh to the dynamic variations of the PDEs during time iterations. This is an extension of the moving mesh strategy in (Gao, 2018) for one dimensional (1-D) problems. We prove the stability and convergence of the present moving mesh equation for arbitrary initial mesh. Consequently, by enlarging the time step sizes of mesh generation, the computational time is shortened without causing instability. The moving mesh equation and the PDE are simulated step by step applying the alternate finite difference method. Both theoretical analysis and numerical results imply that the method is highly effective and robust when simulating high dimensional time dependent PDEs with fast moving shock waves.
机译:当高维PDE的解决方案涉及快速传播冲击波时,现有的变分式移动网格方法是相当不稳定的并且耗时。为了规避问题,我们通过添加一个术语来改善现有的变分方法,该方法将网格适应在时间迭代期间PDE的动态变化。这是一维(1-D)问题的(GAO,2018)中移动网格策略的扩展。我们证明了当前移动网格方程对于任意初始网格的稳定性和融合。因此,通过放大网格生成的时间步长大小,缩短计算时间而不会导致不稳定性。移动网格方程和PDE是逐步施加交替有限差分方法的逐步模拟的。理论分析和数值结果都意味着当使用快速移动冲击波时,该方法在模拟高尺寸时间依赖性PDE时具有高效且稳健。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号