首页> 外文期刊>Engineering analysis with boundary elements >Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method
【24h】

Numerical solution of a modified anomalous diffusion equation with nonlinear source term through meshless singular boundary method

机译:无网格奇异边界法的非线性源项修正反常扩散方程数值解

获取原文
获取原文并翻译 | 示例

摘要

In this study, singular boundary method is employed for solving a modified anomalous diffusion process in two dimensional space with nonlinear source term with initial and Dirichlet-type boundary conditions. The process is modeled as a two dimensional nonlinear time-fractional sub-diffusion equation in sense of Riemann-Liouville fractional derivatives. A splitting scheme is applied to split the solution of the inhomogeneous governing equation into homogeneous solution and particular solution. We present the numerical operation for calculating the particular solution and homogeneous solution. For gaining approximation particular solution and homogeneous solution we employed MPS method and SBM method, respectively. We use theta-weighted finite difference method as time discretization for time derivatives. We employ Predictor-Corrector Algorithm for the nonlinear source term. A comparison check between SBM and other methods is given to show the accuracy of SBM applying on the equation. Consequently, some numerical examples with different domains is tested and compared with the exact analytical solutions to display the validity and accuracy of the numerical method and compared with other methods.
机译:在这项研究中,奇异边界法被用来解决带有初始和Dirichlet型边界条件的非线性源项的二维空间中修正的异常扩散过程。就Riemann-Liouville分数阶导数而言,该过程被建模为二维非线性时间分数次扩散方程。应用拆分方案将不均匀控制方程的解拆分为齐次解和特定解。我们提出了用于计算特定解和齐次解的数值运算。为了获得近似解,我们分别采用了MPS方法和SBM方法来求解特定解和齐次解。我们使用θ加权有限差分法作为时间导数的时间离散化。我们对非线性源项采用Predictor-Corrector算法。通过对SBM与其他方法的比较检查,证明了SBM在方程上的准确性。因此,测试了一些具有不同域的数值示例,并将其与精确的解析解进行比较,以显示数值方法的有效性和准确性,并与其他方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号