首页> 外文期刊>Engineering analysis with boundary elements >Dual boundary element method for analyzing three-dimensional cracks in layered and graded halfspaces
【24h】

Dual boundary element method for analyzing three-dimensional cracks in layered and graded halfspaces

机译:用双边界元法分析分层半空间中的三维裂纹

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a dual boundary element analysis of three-dimensional cracks in layered and graded halfspaces. The fundamental solution of a multilayered solid is used to develop the dual boundary element method so that only the external boundary surface and the crack surface need to be discretized while the material interfaces do not need to be discretized. Infinite boundary elements and crack-tip discontinuous elements are introduced to consider the far-fields of a layered halfspace and capture the crack-tip behavior, respectively. Special attentions are given to strongly singular and hypersingular integrals in the discretized displacement and traction boundary integral equations. For square-shaped, penny-shaped and elliptical cracks located in a homogeneous halfspace, the stress intensity factors obtained with the present formulation are in very good agreement with existing numerical results and closed-form solutions. The square-shaped cracks in horizontally layered halfspaces and the penny-shaped and elliptical cracks in graded halfspaces are analyzed. Results show that the material heterogeneity in layered and graded halfspaces can have a profound effect on the stress intensity factors.
机译:本文提出了分层和渐变半空间中三维裂纹的双重边界元分析。使用多层固体的基本解决方案来开发双重边界元方法,从而仅需离散外边界表面和裂纹表面,而无需离散化材料界面。引入无限边界元素和裂纹尖端不连续元素来考虑分层半空间的远场并分别捕获裂纹尖端行为。在离散位移和牵引力边界积分方程中,特别注意强奇异和超奇异积分。对于位于均匀半空间中的方形,细小形状和椭圆形裂纹,用本公式获得的应力强度因子与现有数值结果和闭式解非常吻合。分析了水平分层半空间中的方形裂纹以及渐变半空间中的便士形和椭圆形裂纹。结果表明,分层和渐变半空间中的材料异质性可以对应力强度因子产生深远的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号