首页> 外文期刊>Engineering analysis with boundary elements >Solving the 3D Cauchy problems of nonlinear elliptic equations by the superposition of a family of 3D homogenization functions
【24h】

Solving the 3D Cauchy problems of nonlinear elliptic equations by the superposition of a family of 3D homogenization functions

机译:通过一族3D均化函数的叠加来求解非线性椭圆方程的3D Cauchy问题

获取原文
获取原文并翻译 | 示例

摘要

We solve the 3D Cauchy problem of a nonlinear elliptic equation in a cuboid, using the derived family of 3D homogenization functions of different orders. When the solution is expressed by the weight superposition of a family of 3D homogenization functions, the unknown boundary data and the solution can be recovered quickly by solving a small scale linear system. It deserves to note that the superposition of homogenization functions method (SHFM) does not need to solve nonlinear equations and regularization, and is quite accurate to find the solution in the whole domain with the errors smaller than the level of noise being imposed on the overspecified Neumann data. Another advantage of the SHFM is that it can solve the Cauchy problem in a large size of the cuboid.
机译:我们使用派生的不同阶的3D均匀化函数族,解决了长方体中非线性椭圆方程的3D Cauchy问题。当解决方案由3D均化函数族的权重叠加表示时,未知边界数据和解决方案可以通过求解小规模线性系统而快速恢复。值得一提的是,均质函数法(SHFM)的叠加不需要求解非线性方程和正则化,并且在整个域中找到解决方案的准确性非常高,其误差小于对超给定值施加的噪声水平诺伊曼数据。 SHFM的另一个优点是,它可以解决大尺寸长方体中的柯西问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号