首页> 外文期刊>Engineering analysis with boundary elements >Highly accurate smoothed finite element methods based on simplified eight-noded hexahedron elements
【24h】

Highly accurate smoothed finite element methods based on simplified eight-noded hexahedron elements

机译:基于简化八节点六面体单元的高精度平滑有限元方法

获取原文
获取原文并翻译 | 示例

摘要

Compared with the tetrahedron elements, hexahedron elements are preferred for their high accuracy. However, coordinate mapping required in the hexahedron elements of FEM formulation costs huge running time, leading to poor performance. Besides, the high quality of Jacobian matrix and mesh is required, which affects the accuracy of the strain results greatly. In order to solve these problems, we propose a novel simplified integration technique based on the smoothed finite element method (S-FEM) for the eight-noded hexahedron elements, where coordinate mapping is not demanded. The proposed new S-FEM-H8 models include simplified NS-FEM-H8 (using node-based smoothing domains) and simplified FS-FEM-H8 (using face-based smoothing domains). In the work, we divide a quadrilateral surface segment of a smoothing domain into two triangular sub-segments, so that the strain-displacement matrix can be calculated using a simple summation in the S-FEM theory instead of the integration in FEM. Then we conduct the Gauss integration scheme in each triangular surface sub-segment in order to avoid the coordinate mapping required in quadrilateral surface segments. The rest solving algorithm is the same as the standard S-FEM. Intensive numerical examples demonstrate that the simplified S-FEM-H8 possess the following features: (1) The strain energy of simplified NS-FEM-H8 is an upper bound of the exact solutions; (2) The simplified NS-FEM-H8 can overcome the volume locking problems for incompressible materials; (3) The method of dividing boundary surface into two triangular surfaces in smoothing domain keeps nearly the same accuracy as the standard S-FEM-H8.
机译:与四面体元素相比,六面体元素具有较高的精度,因此是首选。但是,FEM公式六面体元素中所需的坐标映射需要花费大量的运行时间,从而导致性能不佳。此外,还需要高质量的雅可比矩阵和网格,这极大地影响了应变结果的准确性。为了解决这些问题,我们提出了一种基于平滑有限元方法(S-FEM)的新颖简化的集成技术,该技术用于八节点六面体元素,不需要坐标映射。提议的新S-FEM-H8模型包括简化的NS-FEM-H8(使用基于节点的平滑域)和简化的FS-FEM-H8(使用基于面部的平滑域)。在工作中,我们将平滑域的四边形表面段划分为两个三角形子段,以便可以使用S-FEM理论中的简单求和而不是FEM中的积分来计算应变位移矩阵。然后,我们在每个三角形曲面子段中进行高斯积分方案,以避免四边形曲面段中需要的坐标映射。其余求解算法与标准S-FEM相同。大量的数值算例表明,简化的S-FEM-H8具有以下特征:(1)简化的NS-FEM-H8的应变能是精确解的上限; (2)简化的NS-FEM-H8可以克服不可压缩材料的体积锁定问题; (3)在平滑域中将边界表面划分为两个三角形表面的方法保持与标准S-FEM-H8几乎相同的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号