首页> 外文期刊>Engineering analysis with boundary elements >Searching for an optimal shape parameter for solving a partial differential equation with the radial basis functions method
【24h】

Searching for an optimal shape parameter for solving a partial differential equation with the radial basis functions method

机译:用径向基函数法寻找最优的形状参数来求解偏微分方程

获取原文
获取原文并翻译 | 示例

摘要

This article presents a procedure for searching for an optimal shape parameter for the solution of partial differential equations with the corresponding initial and boundary conditions, where the solution of the problem is unknown. In recent years, radial basis function methods have emerged as alternative computing methods in the scientific computing community.The numerical solution of partial differential equations has usually been obtained by using finite difference methods, finite element methods (FEMs), boundary elements methods or finite volume methods. In our case, we use the multiquadric radial basis function, Gershgorin’s theorem and the Newton method for searching an optimal shape parameter for solving diffusion equations. More cases are presented, the results of which are compared with the results obtained by the FEM.
机译:本文提出了一种程序,用于寻找具有相应初始条件和边界条件的偏微分方程解的最佳形状参数,其中该问题的解未知。近年来,径向基函数方法已成为科学计算界的替代计算方法。偏微分方程的数值解法通常是通过有限差分法,有限元法,边界元法或有限体积法获得的方法。在我们的案例中,我们使用多二次径向基函数,Gershgorin定理和牛顿法来寻找最佳形状参数来求解扩散方程。提出了更多的案例,将其结果与FEM获得的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号