首页> 外文期刊>Engineering analysis with boundary elements >Local multilevel scattered data interpolation
【24h】

Local multilevel scattered data interpolation

机译:局部多级分散数据插值

获取原文
获取原文并翻译 | 示例

摘要

Radial basis functions play an increasingly prominent role in modern approximation. They are widely used in scattered data fitting, numerical solution of partial differential equations, machine learning and others. Although radial basis functions have excellent approximation properties, they often produce highly ill-conditioned discrete algebraic system and lead to a high computational cost. The paper introduces local multilevel scattered data interpolation method, which employ nested scattered data sets and scaled compactly supported radial basis functions with varying support radii. We will provide convergence theory for Sobolev target functions. And several numerical experiments will be provided to conform the efficiency of new method.
机译:径向基函数在现代逼近中扮演着越来越重要的角色。它们广泛用于分散数据拟合,偏微分方程的数值解,机器学习等。尽管径向基函数具有出色的逼近性能,但它们通常会产生条件恶劣的离散代数系统,并导致较高的计算成本。本文介绍了局部多级散乱数据插值方法,该方法采用嵌套的散乱数据集和缩放后的具有不同支撑半径的紧凑支撑径向基函数。我们将为Sobolev目标函数提供收敛理论。并提供了一些数值实验以验证新方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号