首页> 外文期刊>Engineering analysis with boundary elements >On elastoplastic analysis of some plane stress problems with meshless methods and successive approximations method
【24h】

On elastoplastic analysis of some plane stress problems with meshless methods and successive approximations method

机译:无网格法和逐次逼近法对某些平面应力问题的弹塑性分析

获取原文
获取原文并翻译 | 示例

摘要

A numerical method based on the method of fundamental solutions (MFS) and the method of particular solutions (MPS) together with the successive-approximation iteration process is presented. The nonlinear behaviour of the material that hardens with plastic deformation is characterized by the Chakrabarty model. The considerations are based on the incremental theory of plasticity. Furthermore, the incremental strain equations relate the plastic strain increments to the total strains only (the stresses do not appear there). The method is used for solving three example boundary value problems that describe the stress state in some plates subjected to external loads. The accuracy of the results is examined on the basis of the boundary conditions fulfilment and the comparison with the finite element method (FEM). Finally, the regions of elastic/plastic deformation are identified. Then, the distribution of the equivalent stress is shown.
机译:提出了一种基于基本解法(MFS)和特殊解法(MPS)以及逐次逼近迭代过程的数值方法。随塑性变形而硬化的材料的非线性行为由Chakrabarty模型表征。这些考虑是基于可塑性的增量理论。此外,增量应变方程仅将塑性应变增量与总应变相关联(应力不会在此处出现)。该方法用于解决三个示例性边值问题,这些问题描述了某些承受外部载荷的板的应力状态。在满足边界条件并与有限元方法(FEM)进行比较的基础上,检验了结果的准确性。最后,确定弹性/塑性变形的区域。然后,显示了等效应力的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号