首页> 外文期刊>Energy & environmental science >Optimization of polymer photovoltaic cells with bulk heterojunction layers hundreds of nanometers thick:modifying the morphology and cathode interface
【24h】

Optimization of polymer photovoltaic cells with bulk heterojunction layers hundreds of nanometers thick:modifying the morphology and cathode interface

机译:具有数百纳米厚的本体异质结层的聚合物光伏电池的优化:改变形态和阴极界面

获取原文
获取原文并翻译 | 示例

摘要

In polymer photovoltaic (PV) cell, it is desirable to use a relatively thick polymer semiconductor film in order to maximize the light absorption, and to achieve better controllability and reproducibility of the film in manufacturing processes. However, the low fill factor due to restricted charge transport and extraction at large film thickness serially limits the performance of the polymer PV cell. In this work, we investigate the factors that can impact the device performances as film thickness is increased. We also introduce ways to help alleviate these problems in thick BHJ PVs. Our measurement results, based on the space-charge limited-current (SCLC) model and the photo-induced carrier extraction by linearly increasing voltage (photo-CELIV) method, show that the thicker BHJ devices have relatively low electron mobility compared with hole mobility, which directly correlates with high contact resistance at the top cathode interface that prevents efficient transport of photo-generated electrons. Specifically, we found that the newly introduced ESSENCIAL fabrication process helps improve the blend donor and acceptor domain morphologies; and adding an ultrathin C_(60) layer at the cathode interface helps improve the surface morphology and significantly reduce the contact resistance. The effects of the added thin C_(60) layer on PV cells were further studied by examining several important diode characteristics. Our results proved that this layer not only decreases the contact resistance at the cathode but also improves the hole-blocking, thereby providing significantly suppressed recombination at the cathode interface. Consequently, the fabricated PV devices optimized in morphology and interface show significantly improved internal quantum efficiency (IQE) as compared with the thermally annealed conventional PV cells, leading to 5.11% PCE from a P3HT:PCBM blend system. The modifications to the fabrication of BHJ PV cells described in this work allow for photoactive layers to be hundreds of nanometers thick for efficient light absorption and better controllability.
机译:在聚合物光伏(PV)电池中,期望使用相对厚的聚合物半导体膜,以使光吸收最大化,并在制造过程中实现膜的更好的可控制性和再现性。然而,由于在大膜厚度下受限的电荷传输和提取而导致的低填充因子连续地限制了聚合物PV电池的性能。在这项工作中,我们研究了随着膜厚度增加而可能影响器件性能的因素。我们还将介绍一些方法来帮助减轻厚BHJ PV中的这些问题。我们基于空间电荷限制电流(SCLC)模型和通过线性增加电压(photo-CELIV)方法光诱导的载流子提取的测量结果表明,与空穴迁移率相比,较厚的BHJ器件具有相对较低的电子迁移率,这与顶部阴极界面处的高接触电阻直接相关,从而阻止了光生电子的有效传输。具体来说,我们发现新引入的ESSENCIAL制造工艺有助于改善混合供体和受体域的形态;在阴极界面处添加超薄C_(60)层有助于改善表面形态并显着降低接触电阻。通过检查几个重要的二极管特性,进一步研究了添加的薄C_(60)层对PV电池的影响。我们的结果证明,该层不仅降低了阴极的接触电阻,而且改善了空穴阻挡性,从而显着抑制了阴极界面的复合。因此,与热退火的传统PV电池相比,在形态和界面方面进行了优化的制造的PV器件显示出显着提高的内部量子效率(IQE),从而导致P3HT:PCBM共混系统的PCE达到5.11%。这项工作中描述的BHJ PV电池制造方法的修改允许光敏层的厚度达到数百纳米,以实现有效的光吸收和更好的可控性。

著录项

  • 来源
    《Energy & environmental science》 |2013年第7期|2203-2210|共8页
  • 作者单位

    Portland Technology Development, Logic Technology Development, Intel Corporation, Hillsboro, OR 97124, USA;

    Electrical Engineering & Computer Science, The University of Michigan, Ann Arbor,MI, 48109, USA;

    Electrical Engineering & Computer Science, The University of Michigan, Ann Arbor,MI, 48109, USA;

    Mechanical Engineering, The University of Michigan, Ann Arbor, MI, 48109, USA;

    Macromolecular Science & Engineering, The University of Michigan, Ann Arbor, MI,48109, USA,Electrical Engineering & Computer Science, The University of Michigan, Ann Arbor,MI, 48109, USA,Mechanical Engineering, The University of Michigan, Ann Arbor, MI, 48109, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号