首页> 外文期刊>IEEE Transactions on Energy Conversion >Neural-net based real-time economic dispatch for thermal power plants
【24h】

Neural-net based real-time economic dispatch for thermal power plants

机译:基于神经网络的火电厂实时经济调度

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes the application of artificial neural networks to real-time optimal generation dispatch of thermal power plant units. The approach can take into account operational requirements and power network losses. The proposed economic dispatch uses an artificial neural network (ANN) for the generation of penalty factors, depending on the input generator powers and identified system load change. Then, a few additional iterations are performed within an iterative computation procedure for the solution of coordination equations, by using reference-bus penalty-factors derived from Newton-Raphson load flow. A coordination technique for environmental and economic dispatch of pure thermal power systems, based on neural net theory for simplified solution algorithms and an improved man-machine interface is introduced. Numerical results on two test examples show that the proposed algorithm can efficiently and accurately develop optimal and feasible generator output trajectories by applying neural net forecasts of power system load patterns.
机译:本文提出了人工神经网络在火电厂机组实时最优发电调度中的应用。该方法可以考虑操作要求和电网损耗。拟议的经济调度使用人工神经网络(ANN)来生成惩罚因子,具体取决于输入的发电机功率和确定的系统负载变化。然后,通过使用从牛顿-拉夫森潮流导出的参考母线惩罚因子,在迭代计算过程中为协调方程的解法进行一些其他的迭代。介绍了一种基于神经网络理论的纯火电系统环境经济调度协调技术,以简化求解算法和改进的人机界面。在两个测试示例上的数值结果表明,该算法可以通过应用电力系统负荷模式的神经网络预测,有效,准确地开发出最佳可行的发电机输出轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号