首页> 外文期刊>IEEE Transactions on Energy Conversion >Startup optimization of a combined cycle power plant based on cooperative fuzzy reasoning and a neural network
【24h】

Startup optimization of a combined cycle power plant based on cooperative fuzzy reasoning and a neural network

机译:基于协同模糊推理和神经网络的联合循环电厂启动优化

获取原文
获取原文并翻译 | 示例

摘要

A startup optimization control system for a gas and steam turbine combined cycle power plant is developed. The system can minimize startup time of the plant through cooperative fuzzy reasoning and a neural network autonomously adapting to varying process dynamics due to varying operational conditions, i.e. the ambient temperature and humidity. The operational conditions are taken into consideration by the neural network with a learning mechanism to optimize the schedule. The system is applied to a simulation for a plant with a three pressure staged reheat type 235.7 MW rated capacity, and the following points are seen. (1) The system can harmonize machines operations making good use of the operational margins, i.e. machine thermal stress and NO/sub x/ emission. (2) Startup time and energy loss are reduced by 35.6% and 26.3%, respectively, compared with the conventional off-line startup scheduling method.
机译:开发了燃气和蒸汽轮机联合循环发电厂的启动优化控制系统。该系统可以通过协同模糊推理和神经网络来最小化工厂的启动时间,该神经网络可以自主地适应由于变化的运行条件(即环境温度和湿度)而变化的过程动态。带有学习机制的神经网络会考虑运行条件,以优化计划。该系统被用于具有235.7 MW额定容量的三级压力再热式发电厂的仿真中,可以看到以下几点。 (1)该系统可以通过充分利用操作余量(即机器热应力和NO / sub x /排放量)来协调机器操作。 (2)与传统的离线启动调度方法相比,启动时间和能量损耗分别减少了35.6%和26.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号