首页> 外文期刊>Empirica >Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data
【24h】

Bayesian averaging of classical estimates in forecasting macroeconomic indicators with application of business survey data

机译:应用业务调查数据预测宏观经济指标中经典估计值的贝叶斯平均

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop a methodology for forecasting key macro-economic indicators, based on business survey data. We estimate a large set of models, using an autoregressive specification, with regressors selected from business and household survey data. Our methodology is based on the Bayesian averaging of classical estimates method. Additionally, we examine the impact of deterministic and stochastic seasonality of the business survey time series on the outcome of the forecasting process. We propose an intuitive procedure for incorporating both types of seasonality into the forecasting process. After estimating the specified models, we check the accuracy of the forecasts.
机译:在本文中,我们基于业务调查数据开发了一种预测关键宏观经济指标的方法。我们使用自回归规范估计大量模型,并从商业和家庭调查数据中选择回归因子。我们的方法基于经典估计的贝叶斯平均方法。此外,我们研究了业务调查时间序列的确定性和随机性季节性因素对预测过程结果的影响。我们提出了一种直观的程序,将两种类型的季节性因素都纳入了预测过程。估计指定的模型后,我们检查预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号