首页> 外文期刊>Empirical Software Engineering >Does class size matter? An in-depth assessment of the effect of class size in software defect prediction
【24h】

Does class size matter? An in-depth assessment of the effect of class size in software defect prediction

机译:班级大小吗? 深入评估软件缺陷预测中的阶级大小的影响

获取原文
获取原文并翻译 | 示例

摘要

In the past 20 years, defect prediction studies have generally acknowledged the effect of class size on software prediction performance. To quantify the relationship between object-oriented (OO) metrics and defects, modelling has to take into account the direct, and potentially indirect, effects of class size on defects. However, some studies have shown that size cannot be simply controlled or ignored, when building prediction models. As such, there remains a question whether, and when, to control for class size. This study provides a new in-depth examination of the impact of class size on the relationship between OO metrics and software defects or defect-proneness. We assess the impact of class size on the number of defects and defect-proneness in software systems by employing a regression-based mediation (with bootstrapping) and moderation analysis to investigate the direct and indirect effect of class size in count and binary defect prediction. Our results show that the size effect is not always significant for all metrics. Of the seven OO metrics we investigated, size consistently has significant mediation impact only on the relationship between Coupling Between Objects (CBO) and defects/defect-proneness, and a potential moderation impact on the relationship between Fan-out and defects/defect-proneness. Other metrics show mixed results, in that they are significant for some systems but not for others. Based on our results we make three recommendations. One, we encourage researchers and practitioners to examine the impact of class size for the specific data they have in hand and through the use of the proposed statistical mediation/moderation procedures. Two, we encourage empirical studies to investigate the indirect effect of possible additional variables in their models when relevant. Three, the statistical procedures adopted in this study could be used in other empirical software engineering research to investigate the influence of potential mediators/moderators.
机译:在过去的20年中,缺陷预测研究通常已经承认阶级规模对软件预测性能的影响。为了量化面向对象(OO)度量和缺陷之间的关系,建模必须考虑到阶级规模对缺陷的直接和潜在的间接影响。然而,一些研究表明,在构建预测模型时,不能简单地控制或忽略尺寸。因此,仍然存在一个问题,以及何时控制类大小。本研究提供了新的深入检查,对类规模对oo指标与软件缺陷或缺陷之间的关系的影响。我们通过采用基于回归的调解(具有自动启动)和适度分析来评估类规模对软件系统中的缺陷和缺陷 - 倾向的影响,以研究数量和二进制缺陷预测的直接和间接影响。我们的结果表明,所有指标都不总体效果并不重要。在我们调查的七个oo指标中,大小一直对偶联与缺陷/缺陷/缺陷的耦合之间的关系产生重大的调解影响,以及对扇出和缺陷/缺陷之间关系的潜在适度影响。其他指标显示混合结果,因为它们对于某些系统而言是非常重要的,但不是其他系统。根据我们的结果,我们提出了三项建议。一,我们鼓励研究人员和从业者检查班级规模对他们手中的具体数据的影响,以及通过使用所提出的统计调解/审核程序。二,我们鼓励实证研究在相关时调查其模型中可能的额外变量的间接效果。三,本研究采用的统计程序可用于其他经验软件工程研究,以研究潜在的调解员/主持人的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号