首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >MVCWalker: Random Walk-Based Most Valuable Collaborators Recommendation Exploiting Academic Factors
【24h】

MVCWalker: Random Walk-Based Most Valuable Collaborators Recommendation Exploiting Academic Factors

机译:MVCWalker:基于随机游走的最有价值的协作者建议利用学术因素

获取原文
获取原文并翻译 | 示例

摘要

In academia, scientific research achievements would be inconceivable without academic collaboration and cooperation among researchers. Previous studies have discovered that productive scholars tend to be more collaborative. However, it is often difficult and time-consuming for researchers to find the most valuable collaborators (MVCs) from a large volume of big scholarly data. In this paper, we present MVCWalker, an innovative method that stands on the shoulders of random walk with restart (RWR) for recommending collaborators to scholars. Three academic factors, i.e., coauthor order, latest collaboration time, and times of collaboration, are exploited to define link importance in academic social networks for the sake of recommendation quality. We conducted extensive experiments on DBLP data set in order to compare MVCWalker to the basic model of RWR and the common neighbor-based model friend of friends in various aspects, including, e.g., the impact of critical parameters and academic factors. Our experimental results show that incorporating the above factors into random walk model can improve the precision, recall rate, and coverage rate of academic collaboration recommendations.
机译:在学术界,如果没有研究人员之间的学术合作和合作,科学研究的成就将是不可想象的。先前的研究发现,富有成效的学者倾向于合作。但是,对于研究人员来说,从大量的大学术数据中找到最有价值的合作者(MVC)通常是困难且耗时的。在本文中,我们介绍了MVCWalker,这是一种创新的方法,它站在随机行走并重新启动(RWR)的肩膀上,用于向学者推荐合作者。为了推荐质量,利用三个学术因素,即共同作者顺序,最新协作时间和协作时间来定义学术社交网络中的链接重要性。我们对DBLP数据集进行了广泛的实验,以便在各个方面(包括例如关键参数和学术因素的影响)将MVCWalker与RWR的基本模型以及基于朋友的常见基于邻居的模型朋友进行比较。我们的实验结果表明,将上述因素纳入随机游动模型可以提高精度,召回率和学术合作建议的覆盖率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号