首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >High Quality Down-Sampling for Deterministic Approaches to Stochastic Computing
【24h】

High Quality Down-Sampling for Deterministic Approaches to Stochastic Computing

机译:用于随机计算的确定性方法的高质量下行抽样

获取原文
获取原文并翻译 | 示例

摘要

Deterministic approaches to stochastic computing (SC) have been recently proposed to remove the random fluctuation and correlation problems of SC and so produce completely accurate results with stochastic logic. For many applications of SC, such as image processing and neural networks, completely accurate computation is not required for all input data. Decision-making on some input data can be done in a much shorter time using only a good approximation of the input values. While the deterministic approaches to SC are appealing by generating completely accurate results, the cost of precise results makes them energy inefficient for the cases when slight inaccuracy is acceptable. In this work, we propose a high quality down-sampling method for previously proposed deterministic approaches to SC by generating pseudo-random-but accurate-stochastic bit-stream. The result is a much better accuracy for a given number of input bits. Experimental results show that the processing time and the energy consumption of these deterministic methods are improved up to 61 and 41 percent, respectively, while allowing a mean absolute error (MAE) of 0.1 percent, and up to 500X and 334X improvement, respectively, for an MAE of 3.0 percent. The accuracy and the energy consumption are also improved compared to conventional random stream-based stochastic implementations.
机译:最近已经提出了对随机计算(SC)的确定性方法以消除SC的随机波动和相关问题,因此通过随机逻辑产生完全准确的结果。对于SC的许多应用,例如图像处理和神经网络,所有输入数据都不需要完全准确的计算。在某些输入数据上的决策可以在更短的时间内完成输入值的良好近似。虽然SC的确定方法通过产生完全准确的结果来吸引,但精确结果的成本使它们能够在略微不准确的情况下为案例产生低效。在这项工作中,通过产生伪随机但精确的转换的比特流,提出了一种高质量的下抽样方法,以便先前提出的SC的确定方法。结果是给定数量的输入比特的更好的准确性。实验结果表明,这些确定性方法的处理时间和能量消耗分别提高了61%和41%,同时允许平均绝对误差(MAE)分别为0.1%,高达500倍和334倍的改进MAE为3.0%。与传统的随机流基随机实现相比,还改善了精度和能量消耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号