首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs
【24h】

ELDC: An Artificial Neural Network Based Energy-Efficient and Robust Routing Scheme for Pollution Monitoring in WSNs

机译:ELDC:用于WSNS中的污染监测的基于人工神经网络的节能和鲁棒路由方案

获取原文
获取原文并翻译 | 示例

摘要

The range of applications of Wireless Sensor Networks (WSNs) is increasing continuously despite of their serious constraints of the sensor nodes' resources such as storage, processing capacity, communication range and energy. The main issues in WSN are the energy consumption and the delay in relaying data to the Sink node. This becomes extremely important when deploying a big number of nodes, like the case of industry pollution monitoring. We propose an artificial neural network based energy-efficient and robust routing scheme for WSNs called ELDC. In this technique, the network is trained on huge data set containing almost all scenarios to make the network more reliable and adaptive to the environment. Additionally, it uses group based methodology to increase the life-span of the overall network, where groups may have different sizes. An artificial neural network provides an efficient threshold values for the selection of a group's CN and a cluster head based on back propagation technique and allows intelligent, efficient, and robust group organization. Thus, our proposed technique is highly energy-efficient capable to increase sensor nodes' lifetime. Simulation results show that it outperforms LEACH protocol by 42 percent, and other state-of-the-art protocols by more than 30 percent.
机译:尽管传感器节点的资源如存储,处理能力,通信范围和能量,但无线传感器网络(WSN)的应用范围正在持续增加。 WSN中的主要问题是能量消耗和将数据中继数据的延迟延迟到汇聚节点。在部署大量节点时,这变得非常重要,如行业污染监测的情况。我们提出了一种基于人工神经网络的基于神经网络的节能和鲁棒路由方案,用于WSNS称为ELDC。在这种技术中,网络训练在包含几乎所有场景的大型数据集上,使网络更可靠和适应环境。此外,它使用基于组的方法来增加整个网络的寿命,其中组可能具有不同的尺寸。人工神经网络提供了基于反向传播技术选择组的CN和簇头的有效阈值,并允许智能,高效和强大的组组织。因此,我们所提出的技术能够高度节能,能够增加传感器节点的寿命。仿真结果表明,它以42%以上的渗出量优于渗出量,以及其他最先进的协议超过3​​0%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号