首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Private Machine Learning Classification Based on Fully Homomorphic Encryption
【24h】

Private Machine Learning Classification Based on Fully Homomorphic Encryption

机译:基于全同性恋加密的私人机器学习分类

获取原文
获取原文并翻译 | 示例

摘要

Machine learning classification is an useful tool for trend prediction by analyzing big data. As supporting homomorphic operations over encrypted data without decryption, fully homomorphic encryption (FHE) contributes to machine learning classification without leaking user privacy, especially in the outsouring scenario. In this paper, we propose an improved FHE scheme based on HElib, which is a FHE library implemented based on Brakerski's FHE scheme. Our improvement focuses on two aspects. On the one hand, we first use the relinearization technique to reduce the ciphertext size, and then the modulus switching technique is used to reduce the modulus and decryption noise. On the other hand, we need no relinearization and modulus switching if there is additive homomorphic or no homomorphic operation in the multiplicative ciphertext's next homomorphic operation. Homomorphic comparison protocol, private hyperplane decision-based classification and private Naive Bayes classification are implemented by additive homomorphic and multiplicative homomorphic first. In our homomorphic comparison protocol, the number of interactions is reduced from 3 to 1. We choose the proposed FHE scheme to implement private decision tree classification. Simulation results show that the efficiency of our FHE scheme and implementation of private decision tree classification are more efficient than other two schemes.
机译:机器学习分类是通过分析大数据来实现趋势预测的有用工具。由于在没有解密的情况下支持加密数据的同性全相治操作,完全同态加密(FHE)有助于机器学习分类而不泄露用户隐私,尤其是在外包方案中。在本文中,我们提出了一种基于赫布尔的改进的FHE方案,这是基于Brakerski的FHE方案实施的FHE图书馆。我们的改进侧重于两个方面。一方面,我们首先使用相关技术来减少密文尺寸,然后使用模量切换技术来降低模量和解密噪声。另一方面,如果在乘法密文的下一个均匀操作中存在均匀均匀或没有同态操作,我们无需重新化和模量切换。同性恋比较方案,私人超平面决策分类和私人幼稚贝叶斯分类是通过添加剂均匀和倍增性均匀来实现。在我们的同性恋比较方案中,相互作用的数量从3到1减少。我们选择提出的FHE方案来实施私人决策树分类。仿真结果表明,我们的FHE方案的效率和私人决策树分类的实施比其他两种方案更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号