首页> 外文期刊>Emerging and Selected Topics in Circuits and Systems, IEEE Journal on >Fine-Grained Power and Body-Bias Control for Near-Threshold Deep Sub-Micron CMOS Circuits
【24h】

Fine-Grained Power and Body-Bias Control for Near-Threshold Deep Sub-Micron CMOS Circuits

机译:接近阈值深亚微米CMOS电路的精细控制功率和偏置控制

获取原文
获取原文并翻译 | 示例

摘要

Lowering supply voltage is still the most effective technique to reduce dynamic power, and Vdd is being pushed toward the threshold voltage for ultra-low power applications. However, near-threshold circuit leakage power is comparable to switching power and performance is highly sensitive to static and dynamic threshold voltage variations. This makes designing circuits for a target performance very difficult, and post-silicon tunability is required to achieve performance targets without taking huge design margins. Post-silicon tuning of voltage supply and body bias in active mode, together with power gating for idle leakage power minimization are being investigated to tackle variability challenges in near-threshold operation. In this paper, we review and put in perspective techniques recently proposed in the literature for fine-grained post-silicon tuning and power gating. These techniques leverage the typical row-based ASIC layout style and use the row as the atomic element for circuit clustering. The results of row-based power gating on a set of benchmark circuits show that the leakage savings can be achieved are, superior to those obtained using existing power-gating solutions and with much tighter timing and area constraints. Benchmark results on row-based forward body biasing show large leakage power savings with a maximum savings of 61% in case of 18% compensation in 45 nm and 93% in case of 10% compensation in 32 nm with respect to block-level approaches. Finally, row-based dual-Vdd can provide post-silicon speed compensation in near-threshold region up-to 45% while achieving more than 50% lower power compared to single-Vdd.
机译:降低电源电压仍然是降低动态功耗的最有效技术,对于超低功耗应用,Vdd已被推向阈值电压。但是,接近阈值的电路泄漏功率可与开关功率相比,并且性能对静态和动态阈值电压变化高度敏感。这使得为​​目标性能设计电路非常困难,并且需要硅后可调性来实现性能目标而又不占用巨大的设计余量。目前正在研究硅在有源模式下的后硅调整,以及用于最小化空闲泄漏功率的功率门控技术,以应对近阈值操作中的可变性挑战。在本文中,我们回顾并介绍了最近在文献中提出的用于细晶粒后硅调谐和功率门控的技术。这些技术利用了典型的基于行的ASIC布局样式,并将行用作电路群集的基本元素。一组基准电路上基于行的功率门控的结果表明,与使用现有功率门控解决方案所获得的节省相比,其节省的成本要高得多,并且时序和面积约束更为严格。基于行的正向本体偏置的基准结果显示,与块级方法相比,在45 nm处补偿18%时,节省的功率最大,最大节省61%;在32 nm处补偿10%时,最大节省93%。最后,基于行的双Vdd可以在接近阈值的区域内提供高达45%的硅后速度补偿,同时与单Vdd相比,功耗降低了50%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号